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Abstract:  Investigations in the sphere of quantum 
calculations form up new challenges in the public key 
cryptography. Currently known public key crypto 
algorithms may be compromised with the implementation 
of quantum computers. The workgroups of ETSI and 
NIST determined the promising trends, within the 
framework of which there could be obtained acceptable 
solutions and one of the trends is the use of algorithms 
that process points of supersingular elliptic curves. 
Hardware implementations of components for processing 
points of elliptic curves are well known. The purpose of 
this publication is to investigate how they can be used to 
process points of supersingular elliptic curves.  
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I. INTRODUCTION 
The advent of large-scale quantum computing offers great 

promise to science and society, but brings with it a 
significant threat to global information infrastructure. Public-
key cryptography - widely used on the internet today – relies 
upon mathematical problems that are believed to be difficult 
to solve given the computational power available now and in 
the medium term. 

However, popular cryptographic schemes based on these 
hard problems – including Elliptic Curve Cryptography – will 
be easily broken by a quantum computer. This will rapidly 
accelerate the obsolescence of currently deployed security 
systems and will have dramatic impacts on any industry 
where information needs to be kept secure. 

Quantum-safe cryptography refers to efforts to identify 
algorithms that are resistant to attacks by both classical and 
quantum computers, to keep information assets secure even 
after a large-scale quantum computer has been built [1]. 

Supersingular isogeny Diffie–Hellman key 
exchange (SIDH) is a post-quantum cryptographic algorithm 
used to establish a secret key between two parties over an 
otherwise insecure communications channel. It is analogous 
to the Diffie–Hellman key exchange, but is designed to 
resist cryptanalytic attack by an adversary in possession of 
a quantum computer.  

II. THE SUPERSINGULAR ISOGENY DIFFIE-
HELLMAN BACKGROUND 

The supersingular isogeny Diffie-Hellman (SIDH) method 
works with the set of supersingular elliptic curves E over 

Galois Field )p(GF 2 . An isogeny of an elliptic curve E is 
a rational map from E to another elliptic curve E' which is 
also a group homomorphism. Provided the isogenies 
are separable, they are determined by the points inside 
their kernel up to isomorphisms of E'. 

The SIDH method works with a prime of the form 
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A ±=  where wA and wB are small 
primes and an elliptic curve E defined by the equation: 

baxxy 32 ++= . SIDH builds an isogeny map from a 
single elliptic curve point which is taken as the generator for 
the isogeny's kernel. This point is chosen to be a random 
linear combination to two fixed points chosen to be in the 
kernel of the isogeny. 

The j-invariant of an elliptic curve E is a fixed function of 
a set of isomorphic curves. It is computed from the 
parameters that define the curve. For an elliptic curve E 
defined by the equation: baxxy 32 ++=  the j-invariant 

of the curve E is 23
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The security of SIDH is closely related to the problem of 
finding the isogeny mapping between two supersingular 
elliptic curves with the same number of points. In [3] it was 
shown that the security of SIDH will be O(p1/4) for classical 
computers and O(p1/6) for quantum computers. This suggests 
that SIDH with a 768-bit prime (p) will have a 128-bit 
security level.  

In 2014, researchers at the University of Waterloo 
developed a software implementation of SIDH. They ran 
their partially optimized code on an x86-64 processor running 
at 2.4 GHz. For a 768-bit modulus they were able to complete 
the key exchange computations in 200 milliseconds thus 
demonstrating that the SIDH is computationally practical [4]. 

In 2016, researchers from Microsoft posted software for 
the SIDH which runs in constant time (thus protecting against 
timing attacks) and is the most efficient implementation to 
date [5]. 

In 2017, researchers from Florida Atlantic University 
developed the first FPGA implementations of SIDH for 83-
bit and 124-bit quantum security levels [6]. 

III. DEFINITION OF ISOGENY 
For supersingular elliptic curves there is well known Vélu 

algorithm [7] for isogeny [8]: Let E1 and E2 be elliptic 
curves over the field F. The isogeny E1 E2 over F is a non-
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constant rational mapping over F, which is also a group 
homomorphism 
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1→ , where f1, g1, f2, 

g2 are polynomials. For example, F = GF(19) ,  
elliptic curve E1: y2 = x3 + x + 1; 
elliptic curve E2: y2 = x3 + 4x + 13  
#E1 = #E2 = 21;  
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So, to determine the isogeny, it is necessary to perform the 
operations of addition, multiplication and inverse element 
calculation in the Galois field GF(p2). 

IV. ESTIMATION OF THE SOFTWARE TIME 
COMPLEXITY OF OPERATIONS IN THE GALOIS 

FIELDS 
In works [11] and [12], the evaluation of the ability of data 

protection means to counteract attacks by hackers was carried 
out. The definition of Galois field in which hackers work 

hardest was the purpose of the study. It was assumed that 
hackers use software methods. 

One of the computer system hacking methods is the brute-
force method [8], in which the general-purpose computer 
selects all sorts of keys or passwords until one of them fits. 
The same operations over Galois fields elements are 
performed both during the execution of the hack program and 
in the hardware crypto processors. For general purpose 
computers, it is possible to estimate the time of execution of 
the main operation, multiplication of the Galois fields 
elements, for extended fields with different characteristics, 
but with approximately the same order. The basis for such a 
check you can take the field GF(2999). The calculations you 
can make using the Maple 2017 package [9]. The relative 
times of execution of such number of multiplications with 
respect to the time of execution of the same number of 
operations in the binary field GF(2999) are shown Table 1 and 
in the Fig. 1 where prime p≈2999 is characteristic of prime 
GF(p).  
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Fig. 1. Relative time complexity of software multiplying in a different fields.

 
The relative time complexity was determined by the ratio 

of the multiplication time in the field GF(dm) to the 
multiplication time in the field GF(2999). 
As can be seen from the Table 1, software multiplication of 
triple extended field elements has the longest execution time. 
It provides hardware cryptoprocessors based on such fields 
additional protection against hacking. Software-implemented 
operations on simple field elements are executed in the 
fastest way, that indicates the inappropriateness of 
cryptographic processors based on such fields. Multiplication 
in binary fields has one of the highest time complexity, it is 

third after multiplication complexities in fields with 
characteristics 3 and 5. Therefore, the following study will 
focus on binary fields. 

Software multiplication in fields with characteristic 768 
which is used in [3] is performed for 10 times faster than in 
binary fields. Therefore, this system can be hacked using 
classic computers faster than the system that uses binary 
fields. 
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TABLE 1. THE RELATIVE TIME COMPLEXITY OF 
MULTIPLICATION IN EXTENDED FIELD OF DIFFERENT 

CHARACTERISTICS 
Field Characteristic Relative Time 

2 1,00 
3 1,46 
5 1,18 
7 0,84 
11 0,59 
13 0,53 
17 0,45 
19 0,42 
23 0,38 
29 0,33 
… … 

768 0,11 
p 0,03 

V. ESTIMATION OF THE HARDWARE TIME 
COMPLEXITY OF OPERATIONS IN THE GALOIS 

FIELDS 
Implemented in modern FPGA hardware multipliers for 

extended Galois field GF (dm) with approximately the same 
number of elements dm ≈ 2n were estimated in [13] in terms 
of their time complexity to determine the fields in which the 
multiplier will have the least time complexity. Relative to 
GF(2n) results of estimation is shown in Fig. 2. 

 

VI. ESTIMATION OF THE  SOFTWARE-
HARDWARE TIME COMPLEXITY OF 
OPERATIONS IN THE GALOIS FIELDS 

We will assume that the hardware implementation is used 
by users of data protection tools, and software is used by 
hackers. Then we can introduce a generalized time 
complexity index. We will calculate this indicator as the ratio 
of software time complexity to hardware time complexity for 
the same fields. When the value of this indicator is greater, 
then hackers will have more problems, so data protection will 
be better. 
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Fig. 2. Relative time complexity of hardware multipliers in different fields.

Results of hardware-software complexity estimation is 
shown in Fig. 3. 

As can be seen from Fig. 3, the trial and binary Galois 
fields provide the best data protection. Fields with large 
characteristics provide weaker protection. The use of 
hardware tools for working in such fields has less effect than 
for working in binary and trial fields. As result the use of 

hardware tools to work in the field with the characteristic 768 
[3] also has less effect than for working in binary and ternary 
fields.  

The use of isogenies of supersingular elliptic curves is 
oriented toward usage of Galois field with big characteristics, 
so they are focused on software implementation. 
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Fig. 3. Relative hardware-software time complexity of multipliers in different fields.

V. CONCLUSION 
The use of isogenies of supersingular elliptic curves is 

oriented toward software implementation of the method. 
Hardware implementation of this method will not provide 
such a reduction in time complexity and increase the degree 
of data protection as it provides in methods oriented on 
binary fields. 
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