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Abstract: The reliable tracking of humans and materials in indoor scenarios is an ongoing research issue. For 
example, the monitoring of humans in partially hazardous environments – like the surroundings of an underground 
longwall mining infrastructure – is crucial to save human lives. A centroid location estimation technique based on 
received signal strength (RSS) readings offers a well known and low-cost tracking solution in such a rough environment 
where many other systems with optical, magnetical or ultrasound sensors fail. Due to signal fading the RSS values 
alone cannot ensure a precise tracking. The sensor fusion of the RSS-based localization with an inertial navigation 
system (INS) leads to a more precise tracking. The long-term stability of the RSS-based localization and the good short-
term accuracy of the INS are combined using a Kalman filter. The experimental results on a motion test track show that 
a tracking of humans in multipath environments is possible with low infrastructural costs. 
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1. INTRODUCTION 
In an environment with partially dangerous areas a 

rough but high-available localization of humans with 
a monitoring of their movement patterns is of interest. 
For example, the detection of maintenance staff in the 
longwall mining, in particular close to self-advancing 
hydraulic shields is necessary.  

Longwall mining is a highly productive 
underground coal mining technique where massive 
shearers cut coal from a wall face, which falls onto a 
conveyor belt for removal. The hydraulic shields are 
placed in a long line in order to support the roof of the 
coalface and maintaining a safe working space along 
the face for the miners. The automatic motion of the 
hydraulic shields needs to be stopped when a miner is 
localized in front of them. The accuracy of the 
localization system determines the size of the security 
zone and the amount of shields which are involved. 
Besides the accuracy also the availability of the 
localization system plays a significant role for the 
availability and efficiency of the longwall mining 
system, since the safety critical system architecture 
requires an immediate idle state of the system. 

The environment of a longwall mining system 
does not permit a global radio-based positioning (e.g. 
GPS). A local radio-based system with a 
multilateration of several distance approximations 

between an unknown node (blind node, BN) and 
fixed anchor nodes (reference nodes, RNs) is 
applicable to find out the position of a miner equipped 
with a BN. 

The received signal strength (RSS) offers a low-
cost sensor for ranging-based localization systems. A 
classification of the ranging-based techniques is 
shown in Fig. 1. The use of directional sensors like 
infra-red (IR), ultrasound, optical and magnetic 
systems is limited to line-of sight (LOS) scenarios. 
There are several RF-based methods which can be 
used also in non-line-of sight (NLOS) scenarios. In 
principle the location estimation can be realized via 
analyzing signal propagation delays (time of arrival – 
TOA, time difference of arrival – TDOA), receive 
directions (Angle of Arrival – AOA) or RSS readings. 

 
Fig. 1 – Classification of range-based localization 

techniques. Source: [1] 
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The methods are more or less affected by the 
problems of multipath propagation and resulting 
fading effects. For multipath environments the 
distances based on RSS measurements are often 
erroneous, especially for dynamic environments 
where the position of obstacles (or humans) may 
change continuously. Thus, for a range-based 
localization it is difficult to rely only on the raw RSS 
values. For a correct interpretation of the values 
according to a path loss model additional measures 
are required, since the influence of large-scale and 
small-scale fading effects leads to bad distance 
estimations. [2],[3] 

The small-scale fading due to reflection, 
diffraction and scattering on obstacles is the main 
issue. When the transmitter or receiver change their 
position by small movements in the order of the 
wavelength (e.g. ൎ 12.5 ܿ݉ for 2.4 ݖܪܩ) the RSS 
may vary by three or four orders of magnitude 
(30.  Therefore it is challenging to .(݉ܤ݀ 40.
approximate the distance between transmitter and 
receiver with the RSS only. A detailed description of 
fading principles is given in [4], [5] and [6]. 

With a combining of the information coming 
from different types of sensors the accuracy of the 
localization can be improved. Compared to a system 
relying on a single sensor, the location estimation 
has a reduced uncertainty and an increased tolerance 
to single point failures. It is a common used 
technique to combine the position estimations of an 
RF-based system with an inertial navigation system 
(INS) [7], [8], [9]. In comparison to the RSS-based 
RF positioning system no external references are 
necessary for the INS. 

With the acceleration information of the BN it is 
possible to calculate the change in velocity and 
position by successive mathematical integration of 
the acceleration with respect to time. The rotational 
motion of the BN according to the environment 
(reference frame) must also be taken into account so 
that a three-dimensional INS overall has six degrees 
of freedom (DOF). The rotations around the 
acceleration directions may be sensed using 
gyroscopic sensors. The latest advances in micro-
electro-mechanical (MEMS) acceleration and 
gyroscopic sensors support the design of a low-cost 
inertial measurement unit (IMU). Sometimes an 
additional earth magnetic field sensor and a preasure 
sensor are added to the IMU to support the heading 
and height calculation in the three-dimensional 
space. 

In this paper we propose the sensor fusion of a 
proprietary RF localization system and a low-cost 
INS using a Kalman filter. In section II, the 
infrastructure components and algorithms of the RF 
localization system are described together with the 
challenging multipath fading. In section III, the INS 

with the system architecture of the low-cost IMU is 
presented. The procedure of the sensor fusion with a 
Kalman filter is given in section IV. In section V, we 
validate the localization system performance by 
experimental results of a dynamic measurement on a 
motion test track. In the last section VI, the results 
are discussed and investigated in terms of an outlook 
for further system developments. 

 
2. RF LOCALIZATION SYSTEM 

The infrastructure components of the RF 
localization system are shown in Fig. 2. We assume 
a one-dimensional localization scenario as it is given 
in an underground longwall mining application [10], 
although the system is also applicable for a two-
dimensional localization (e.g. in a factory building) 
[11]. 

Fig. 2 – RF localization system with infrastructure 
components in an underground longwall coal mining 

tracking application (RN – reference node, BN – blind 
node). Source: Own elaboration 

The blind node (BN) which should be located can 
move in front of a line of reference nodes (RNs) 
with fixed positions. The RNs are connected to a 
date concentrator (e.g. industrial PC) via a wired bus 
interface (e.g. CAN). The localization process can 
be subdivided into the components data acquisition, 
data preprocessing and location estimation (cf. Fig. 
3). The single processing steps are described briefly 
in the following. 

 In the data acquisition phase the RNs receive 
packets from the BN and store the 
corresponding RSS values. Since we use a 
multimodal diversity platform with four single 
RF transceivers on the BN and the RNs more 
than one packet can be received at the RN. 
The redundant values are transmitted to the 
data concentrator using the CAN bus. 

 In the data preprocessing phase a selection 
combining (SC) of the redundant RSS values 
is done. The maximum RSS of each RN is 
computed and transformed into a weight.  

 In the location estimation phase the BN 
position is calculated with the weighted 
centroid of the known RN positions. A 
detailed description of the used selective 
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adaptive weighted centroid location 
estimation algorithm can be found in [10]. 

 
Fig. 3 – Structure of the RSS-based localization 

system. Source: Own elaboration 

When designing an RSS-based indoor location-
sensing system it is recommended to concentrate on 
the proper acquisition of the RSS values since their 
interpretation has the main influence on the system’s 
accuracy. For an obstructed Indoor environment like 
the longwall mining application illustrated in Fig. 2 
multipath effects have to be taken into account at the 
propagation of electromagnetic waves. Macroscopic 
objects with metallic surfaces (e.g. hydraulic shields, 
shearer, conveyor belt) are characteristic for these 
environments. Therefore, not only LOS connections 
but also NLOS connections between transmitter 
(BN) and receiver (RN) have to be considered. As a 
consequence of the multipath propagation by 
reflection, diffraction and scattering effects 
interferences of different multipath components at 
the receiver occur. As represented in Fig. 4, the 
distance-dependent path loss at the propagation of 
electromagnetic waves between transmitter and 
receiver is influenced by two different fading 
components.  

 
Fig. 4 – 2.4 GHz path loss measurement over a 

distance of 11 m (TX speed = 0.27 m/s, f = 2440.22 
MHz, 250 kHz RF bandwidth, 150 RSS samples, 5 Hz 

update rate). Source: Own elaboration 

Without any disturbances (free space 
propagation) the distance-depending path loss shows 
a logarithmic dropping of power with linear 
increasing distance according to the log-distance 
path loss model. With (1) the average path loss 

 over a distance ݀ is given by the (݉ܤ݀ in) ሺ݀ሻܮܲ
average path loss over a reference distance ݀଴ and 
the environment-specific propagation coefficient ݊ 
[4]. 

 
ሺ݀ሻܮܲ   ൌ ሺ݀଴ሻܮܲ ൅ 10 · ݊ · log ቀ ௗ

ௗబ
ቁ (1) 

 
For obstructed Indoor environments a log-

normally distributed random value Χఙ can be added 
to the above equation to take the large-scale fading 
due to shadowing through obstacles into account. 
The small-scale fading due to interferences of 
different multipath components is the main source of 
errors for the radio-based localization system. 
Frequency specific signal dropouts in case of 
destructive interference effects lead to bad distance 
approximations and a large location estimation error 
(LEE). In some cases – when the signal strength at 
the receiver is below the receiver’s sensitivity 
threshold the signal gets lost and no information for 
the distance between transmitter and receiver can be 
calculated. Thus, the small-scale fading influences 
not only the accuracy of the location estimation but 
also the availability of the system. 

A diversity concept with the use of space and 
frequency diversity at the same time is used to 
improve the accuracy of the distance estimation and 
increase the system’s availability. 

The RF communication takes place by 
proprietary radio modules from Amber Wireless. 
Both the BN and the RN have a multichannel 
transceiver with four RF modules which are 
arranged in a rectangle (from the top view, cf. Fig. 
5). Two different frequency bands (868 MHz and 
2.4 GHz) are used, whereby the diagonal arranged 
modules use the same frequency band.  

 
Fig. 5 – Overview of the radio positioning system 

and diversity concept with eight RF communication 
channels. Source: Own elaboration 

The AMB2500 (T1 and T3) operates at the 
license-free ISM band at 2.4 ݖܪܩ ( ௠݂ ൌ
-and is attached by the CC2500 Low (ݖܪܩ 2440.2
power RF IC. The AMB8400 (T2 and T4) operates 
at the license-free ISM band at 868 ݖܪܯ ( ௠݂ ൌ
 and uses the CC1101 Low-power RF (ݖܪܯ 868.3
IC. For both ICs the MSK modulation, a data rate of 
 are ݉ܤ݀ and an output power of ൅10 ݏ݌ܾ݇ 250
used. Beside space diversity also frequency diversity 
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is realized with eight uncorrelated communication 
channels. In the best case eight RSS values are 
collected for each RN and the best of them is used 
for the distance approximation after a selection 
combining (SC). We use two single SC blocks for 
each frequency and a following SC for their output 
as it is shown in Fig. 6. After all the maximum RSS 
value is forwarded to the distance calculation block.  

 
Fig. 6 – Two-stage selection combining (SC) using 

spatial and frequency diversity channels. Source: Own 
elaboration 

 
3. INERTIAL NAVIGATION SYSTEM 
The fundamentals about inertial navigation are 

given in [12] and [13]. In principle, an INS consists 
of the inertial sensor platform (inertial measurement 
unit – IMU) for the acquisition of the motion and the 
navigation computer for the calculation of the 
position of the platform. When the sensors are 
mounted directly to the the body of the platform it is 
called a strapdown IMU and a strapdown 
mechanization can be used to compute the position 
of the platform in the navigation frame. 

The strapdown mechanization of the INS is 
shown in Fig. 7. It uses a three-dimensional 
navigation frame with six degrees of freedom. The 
three translatory motions (ܽ௫, ܽ௬ and ܽ௭) and the 
three rotary motions (ݓ௫, ݓ௬ and ݓ௭) are measured 
in the body frame. For the translatory motions 
acceleration sensors are used. The rotary motions are 
measured with angular rate sensors (gyroscopic 
sensors). 

 
Fig. 7 – Three-dimensional strapdown inertial 

navigation system. Source: Own elaboration 

A temperature compensation is used for the 

sensors and the values are corrected according to 
bias and nonlinearity errors. The filtered vector of 
the angular rates ݓሬሬԦ´ is used to update the attitude of 
the sensor platform in the navigation frame. The 
integrated values are expressed by the Euler angles 
 ሬሬԦ´ theݓ∆ and ߰. For small angular rate changes ߠ ,߶
corresponding rotation matrix ܥ௕

௡ is given with 
 

௕ܥ          
௡ ൌ ൥

1 െ߰ sin ߠ
߰ 1 െ߶

െ sin ߠ ߶ 1
൩.  (2) 

 
௕ܥ

௡ is used for the transformation of coordinates 
from the body to the navigation frame and the 
gravity correction of the measured accelerations. 
The corrected acceleration vector in the navigation 
frame is given with 

 
       Ԧܽ௡ ൌ ௕ܥ

௡ Ԧܽ௕ െ Ԧ݃.  (3) 
 
To get the corresponding velocity vector ݒԦ௡ for 

the movement between the actual measurement at 
time step ݐ and the last measurement at time step 
ݐ െ 1 (3) needs to be integrated. 
 

ሻݐԦ௡ሺݒ                ൌ ݐԦ௡ሺݒ െ 1ሻ ൅ ׬ Ԧܽ௡ሺݐሻ݀ݐ
௧

௧ିଵ   (4) 
 

The position vector can be calculated by 
integrating (4) and is given with  

 
ሻݐԦ௡ሺݏ                ൌ ݐԦ௡ሺݏ െ 1ሻ ൅ ׬ ݐሻ݀ݐԦ௡ሺݒ

௧
௧ିଵ .  (5) 

 
The Low-cost IMU hardware has six degrees of 

freedom (DOF) and is shown in Fig. 8. The system 
architecture has two sockets for the connection of 
the IMU to the system controller on our 
multichannel transceiver platform (cf. Fig. 2). We 
use the features of the IMU platform on both the BN 
and the RN. 

 
Fig. 8 – Six DOF low-cost IMU hardware platform. 

Source: Own elaboration 

)( n
bC
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The USB interface is used for the sensor 
calibration on the BN and the CAN interface for the 
connection of the RNs to the data concentrator PC as 
described in section II. 

The x-, y- and z-component of the BN’s 
acceleration is measured with a digital LIS3LV 
triaxial acceleration sensor which operates at a full 
scale range of േ2݃. The angular rates around the 
three axis are measured with analog LY530ALH 
gyroscopic sensors with a measurement range of 
േ300 °/ܿ݁ݏ. The actualization rates of all sensors 
are set to 40 ݖܪ. The detailed sensor characteristics 
are summarized in Table I. 

Table 1. IMU sensor characteristics 

Parameter LIS3LV Acc LY530ALH Gyro 
Measurement 
range 

േ2݃ േ300 °/ܿ݁ݏ 

Resolution 12 ݐ݅ܤ ݐ݅ܤ 12
Data rate 40 ݖܪ 40 ݖܪ 
Temperature 
sensitivity 

 ܥ°/ܿ݁ݏ/° 0.05 ܥ°/% 0.025

Nonlinearity േ2 % ܵܨ േ1 % ܵܨ

The sensors need to be calibrated before they can 
provide useful results. We use an in-field calibration 
without the need of external equipment (e.g. three-
axis turn-table) as it is proposed in [14]. 

 
4. SENSOR FUSION ALGORITHM 

In [11] a plausibility filtering of the calculated 
distances between the BN and the RNs is proposed. 
In [10] the RSS-based BN position (and not its 
distances to RNs) is filtered according to an one-
dimensional motion vector where the INS position 
acts as a threshold value. This feedforward 
architecture is easy to implement and requires only a 
small amount of additional processing steps. Our 
new approach uses a feedback architecture for the 
adaption of the estimated position (cf. Fig. 9). 

 
Fig. 9 – Multi-sensor multi-temporal centralized 

measurement fusion. Source: [15] 

The measurements from the RSS-based 
localization system and the sensor values of the INS 
are combined with a centralized measurement fusion 

according to [15]. The resulting observation ܢ෤ܓ is 
used for the correction of the a priori state estimate 
࢑ෝ࢞

ି.  
The Kalman filter uses a set of mathematical 

equations that provides an efficient technique to 
estimate the state of a discrete-time controlled 
process. The recursive algorithm predicts the actual 
process state with the last state and the actual 
measurement for process input. The model for the 
process and measurement is given as follows: 
࢑࢞                           ൌ ૚ି࢑࢞࡭ ൅  (6)                       ,࢑࢝

࢑ࢠ                           ൌ ࢑࢞࢑ࡴ ൅  (7)                         .࢑࢜

The process noise ܓܟ and the measurement noise 
 ,are assumed to be independent (of each other) ܓܞ
white, and with normal probability distributions. We 
take the covariances of a real life path loss 
measurement for the initial noise estimations. The 
filter is divided into two parts, the time update 
(prediction stage) and the measurement update 
(correction stage). The time update equations for the 
filter are the following [16]: 

ܓොܠ                                 ൌ ૚ିܓොܠۯ
ି ,                           (8) 

ܓ۾                        
ି ൌ ܂ۯ૚ିܓ۾ۯ ൅  (9)                      .ۿ

The time update equations project forward the 
current state ܠොܓ

ି and the error covariance estimates 
 is the ۿ .૚ to obtain an a priori state estimateିܓ۾
process noise covariance matrix. The ܖ ܠ ܖ matrix ۯ 
defines the transition from the state at the previous 
time step ܓ െ ૚ to the state at the current step ܓ. The 
measurement update can be described as follows: 

ܓ۹                    ൌ ܓ۾
ܓ۾ሺ۶܂۶ି

܂۶ି ൅  ሻି૚,          (10)܀

ܓොܠ                       ൌ ܓොܠ
ି ൅ ܓܢሺܓ۹ െ ܓොܠ۶

ିሻ,            (11) 

ܓ۾                              ൌ ሺ۷ െ ܓ۾۶ሻܓ۹
ି.                (12) 

The Kalman gain ۹ܓ is used to weight the 
difference between the a priori state estimate ܠොܓ

ି and 
the current measurement observations ܓܢ. The 
measurement noise covariance matrix ܀ is 
dependent on the variance of the measurement 
values. The ܖ ܠ ܖ matrix ۶ relates the state estimate 
ܓොܠ

ି to the measurement ܓܢ. 
 

5. EXPERIMENTAL RESULTS 
The test bed for the localization system is a 

tracking application on the motion test track shown 
in Fig. 10. Seven RNs are evenly distributed next to 
the track. Reflecting walls are installed to force 
multipath RF propagation for a realistic scenario. 
During the experiment the BN moves between the 
end positions A and B and the RSS and INS 
measurements are collected on the data concentrator. 

1ˆ kx 
kx̂ kx̂

kz~

RSSkz INSkz
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Fig. 10 – RF positioning system on a motion test 

track in a multipath indoor environment (BN – blind 
node, RN – reference node). Source: Own elaboration 

A Java application (cf. Fig. 11) is running on the 
PC for the computation and visualization of the 
BN’s position. The central component of the 
software is the radio map where the infrastructure is 
visualized. The circles around the RNs represent the 
RSS-based distance approximations. The recorded 
RSS values are also saved in a database together 
with the INS measurements. Therefore an offline 
calculation of the BN’s position is possible and the 
performance of different measurement noise 
covariance matrices for the Kalman filter can be 
compared easily. 

 
Fig. 11 – Java software platform LEViAn 

(Location Estimation with Visualization and Analysis) 
on the data concentrator PC. Source: Own elaboration 

We compare the location estimation error (LEE) 
of four different configurations. The first 
configuration is the ”RSS” reference localization 
without any additional filtering. The second 
configuration ”RSS+d_filter” uses the distance filter 
technique from [11]. The third configuration 

”RSS+INS_filter” uses the motion data from an INS 
to filter the BN position [10]. The fourth 
configuration ”RSS+INS_fusion” is the proposed 
sensor fusion of the RSS localization and the INS 
using a Kalman filter. The cumulative distribution 
functions (CDFs) of all configurations are shown in 
Fig. 12.  

 
Fig. 12 – Error probability for the location 

estimation of various filter configurations. Source: 
Own calculation 

A detailed error statistic can be found in Table II. 
The median error LEEmed is nearly the same for all 
configurations. Looking at the ૢૢࢎ࢚ percentile the 
influence of the filter and fusion algorithms gets 
obvious. The maximum error of the RSS localization 
system without any filter is ૛. ૠૡ ࢓. With the 
plausibility filtering of distances the maximum error 
is reduced by more than ૛૞ % to ૛. ૙ૡ ࢓. With the 
sensor fusion of the RSS localization and the INS 
the maximum error is reduced by even more than 
૟૛ % to ૚. ૙ૡ ࢓. 

Table 2. Performance comparison of different filter 
configurations (LEE – location estimation error in m) 

 RSS RSS+ 
d_filt 

RSS+ 
INS_filter 

RSS+ 
INS_fusion 

௔௩ܧܧܮ 0.52 0.54 0.48 0.46 
 ௅ாா 0.49 0.46 0.39 0.26ߪ

 ଽଽ% 2.38 1.89 1.58 1.04ܧܧܮ
௠௔௫ܧܧܮ 2.78 2.08 1.93 1.08 

 

6. CONCLUSION AND FUTURE WORK 
Looking at the dimension of the test track with a 

length of 9.60 ݉, the error range of the RSS 
localization without filter covers more than the half 
of the whole track, which indicates a bad system 
performance. The proposed sensor fusion is useful to 
reduce the error in a significant way. The combined 
system has a sufficient precision and enables a 
localization for many applications, e.g. for the 
monitoring of maintenance staff in a longwall 
mining infrastructure. Since the inertial sensor 
technology based on MEMS techniques evolves 
rapidly, the accuracy of the combined system can be 
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even more improved with a newer and more precise 
sensor platform. The purpose of a low-cost 
localization system should be considered when 
selecting the appropriate sensors. For the RSS 
localization system a further development should 
comprise the replacement of the proprietary RF 
transceivers by standardized low-power protocols 
like ZigBee or Bluetooth low energy. For the future 
we are also consider to test the system in a real 
scenario of an underground longwall mining 
application. Therefore, we are currently working on 
the intrinsic safety of the infrastructure components. 
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