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Abstract: A major step for high-quality optical surfaces faults diagnosis concerns scratches and digs defects 
characterization in products. This challenging operation is very important since it is directly linked with the produced 
optical component’s quality. A classification phase is mandatory to complete optical devices diagnosis since a number 
of correctable defects are usually present beside the potential “abiding” ones. Unfortunately relevant data extracted 
from raw image during defects detection phase are high dimensional. This can have harmful effect on the behaviors of 
artificial neural networks which are suitable to perform such a challenging classification. Reducing data dimension to a 
smaller value can decrease the problems related to high dimensionality. In this paper we compare different techniques 
which permit dimensionality reduction and evaluate their impact on classification tasks performances. 
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1. INTRODUCTION 
We are involved in fault diagnosis of optical 

devices in industrial environment. In fact, 
classification of detected faults is among chief 
phases for succeeding in such diagnosis. Aesthetic 
flaws, shaped during different manufacturing steps, 
could provoke harmful effects on optical devices’ 
functional specificities, as well as on their optical 
performances by generating undesirable scatter light, 
which could seriously degrade the expected optical 
features. Taking into account the above-mentioned 
points, a reliable diagnosis of these defects in high-
quality optical devices becomes a crucial task to 
ensure products’ nominal specification and to 
enhance the production quality. Moreover, the 
diagnosis of these defects is strongly motivated by 
manufacturing process correction requirements in 
order to guarantee mass production (repetitive) 
quality with the aim of maintaining acceptable 
production yield.  

Unfortunately, detecting and measuring such 
defects is still a challenging dilemma in production 
conditions and the few available automatic control 
solutions remain ineffective. That’s why, in most of 

cases, the diagnosis is performed on the basis of a 
human expert based visual inspection of the whole 
production. However, this usual solution suffers 
from several acute restrictions related to human 
operator’s intrinsic limitations (reduced sensitivity 
for very small defects, detection exhaustiveness 
alteration due to attentiveness shrinkage, operator’s 
tiredness and weariness due to repetitive nature of 
fault detection and fault diagnosis tasks).  

To overcome these problems we have proposed a 
detection approach based on Nomarski’s microscopy 
issued imaging [1] [2]. This method provides robust 
detection and reliable measurement of outward 
defects, making plausible a fully automatic 
inspection of optical products. However, the above-
mentioned detection process should be completed by 
an automatic classification system in order to 
discriminate the “false” defects (correctable defects) 
from “true” (permanent) ones. In fact, because of 
industrial environment, a number of correctable 
defects (like dusts or cleaning marks) are usually 
present beside the potential abiding defects. That is 
why the association of a faults’ classification system 
to the aforementioned detection module is a 
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foremost supply to ensure a reliable diagnosis. In a 
precedent paper [3], we proposed a method to 
extract relevant data from raw Nomarski images. In 
the aim of effectively classify these descriptors, 
neural network based techniques seem appropriate 
because they have shown many attractive features in 
complex pattern recognition and classification tasks 
[4] [5]. But we are dealing with high dimensional 
data (13 and more components vectors) so behaviors 
of a number of these algorithms could be affected. 
To avoid this problem we are investigating different 
dimension reduction techniques for achieving better 
classification (in terms of performance and 
processing time). 

This paper is organized as follows: in the next 
section, motivations for data dimensionality 
reduction and also Self Organizing Maps (SOM), 
Component Analysis (CCA) and Curvilinear 
Distance Analysis (CDA), three techniques to 
perform this task are introduced. These techniques 
have been tested using an experimental protocol 
presented in Section 3. The Section 4 deals with 
experiments results: first a comparison of data 
projections quality and an analysis of their possible 
impact on classification tasks are carried out. 
Secondly this impact is studied on a real 
classification problem involving Multilayer 
Percepton artificial neural network, and the obtained 
results are discussed. The Section 5 concludes this 
work and gives a number of perspectives. 

 
2. DATA DIMENSIONALITY REDUCTION 

TECHNIQUES 
It can be found in literature, lot of examples 

using various dimension reduction techniques (linear 
or not) as a preliminary step before more refined 
processing:, Principal Component Analysis (PCA) 
[6], Self Organizing Maps (SOM) [7;8], Curvilinear 
(CCA) [9;10] or (CDA) [11]. 

Dealing with high-dimensional data indeed poses 
problems, known as “curse of dimensionality” [10]. 
First sample number required to reach a predefined 
level of precision in approximation tasks increases 
exponentially with dimension. Thus, intuitively, the 
sample number needed to properly learn high-
dimensional data becomes quickly much too large to 
be collected by real systems, when dimension of 
data increases. Moreover surprising phenomena 
appear when working in high dimension [12] : for 
example, distances variance between vectors 
remains fixed while its average increases with the 
space dimension, and Gaussian kernel local 
properties are also lost. These last points explain that 
behaviour of a number of artificial neural network 
algorithms could be affected while dealing with 
high-dimensional data. Fortunately, most real-world 

problem data are located in a manifold of dimension 
p much smaller than its raw dimension. Reducing 
data dimensionality to a smaller value can therefore 
decrease the problems related to high dimension. 

 
2.1 SELF ORGANIZING MAPS 

Self-Organizing Map is a classical method 
originally proposed by Kohonen [13]. The algorithm 
projects multidimensional feature space into a low-
dimensional presentation. Typically a SOM consists 
of a two dimensional grid of neurons. A vector of 
features is associated with each neuron. During the 
training phase, these vectors are tuned to represent 
the training data under constraint of neighbourhood 
conservation Similar data are projected to the same 
or nearby neurons in the SOM, while different ones 
are mapped to neurons located further from each 
other, resulting in a clustering data. Thus SOM is an 
efficient tool for quantizing the data’s space and 
projecting this space onto a low-dimensional space, 
while conserving its topology. SOM is often used in 
industrial engineering [14], [15] to characterize 
high-dimensional data or to carry out classification 
tasks. Unfortunately it suffers of major drawbacks: 
first the configuration of the topology is static and 
should be fixed a priori (what is efficient only for 
little values of projection subspace dimension), 
moreover the method defines only a discrete 
nonlinear subspace and finally algorithm is 
computationally too expensive to be practically 
applied for projection space dimension higher than 
three.  

 
2.2 CURVILINEAR COMPONENTS 
ANALYSIS 

The goal of this technique proposed by 
Demartines [16] is to reproduce the topology of a n-
dimension original space in a new p-dimension 
space (where p<n) without fixing any configuration 
of the topology. To do so, a criterion characterizing 
the differences between original and projected space 
topologies is processed: 
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where n
ijd  (respectively p

ijd ) is the Euclidean 

distance between vectors ix  and jx of considered 
distribution in original space (resp. in projected 
space), and F is a decreasing function which favors 
local topology with respect to the global topology. 
This energy function is minimized by stochastic 
gradient descent [17]: 
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where ]1;0[: →ℜ+α  is a decreasing function 
representing a learning parameter, and 

++ ℜ→ℜ:λ is a decreasing function too, 
representing a neighborhood factor. CCA provides 
also a similar method to project, in continuous way, 
new points in the original space onto the projected 
space, using the knowledge of already projected 
vectors. 

 
2.3 CURVILINEAR DISTANCE ANALYSIS 

Since CCA encounters difficulties with unfolding 
of very non-linear manifolds, an evolution called 
CDA has been proposed [18]. It involves curvilinear 
distances (in order to better approximate geodesic 
distances on the considered manifold) instead of 
Euclidean ones. Curvilinear distances are processed 
in two steps way. First is built a graph between 
vectors by considering k-NN,ε , or other 
neighborhood, weighted by Euclidean distance 
between adjacent nodes. Then the curvilinear 
distance between two vectors is computed as the 
minimal distance between these vectors in the graph 
using Dijkstra’s algorithm. Finally the original CCA 
algorithm is applied using processed curvilinear 
distances. This algorithm allows dealing with very 
non-linear manifolds and is much more robust 
against the choices of α and λ functions. 

 
3. EXPERIMENTAL VALIDATION 

PROTOCOL 
In order to obtain exploitable data for a 

classification scheme, we first needed to extract 
relevant information of raw Nomarski’s microscopy 
issued images. We proposed to proceed in two steps 
[2]: first a detected items’ images extraction phase 
and then an appropriated coding of the extracted 
images. The image associated to a given detected 
item is constructed considering a stripe of ten pixels 
around its pixels. Thus the obtained image gives an 
isolated (from other items) representation of the 
defect (e.g. depicts the defect in its immediate 
environment). Fig. 1 gives four examples of detected 
items’ images using the aforementioned technique. It 
shows different characteristic items which could be 
found on optical device in industrial environment. 
The information contained in such images is highly 
redundant. Furthermore, the generated images don’t 
have necessarily the same dimension (typically this 
dimension can turn out to be thousand times as 
high). That is why these raw data (images) cannot be 
directly processed and has to be appropriately 

encoded. 
 

a)   b)  

c)   d)  
Fig. 1 – Images of characteristic items:  a) scratch; b) 

dig; c) dust; d) cleaning marks. 

 
This is done using a set of Fourier-Mellin 

transform issued invariants described bellow. The 
Fourier-Mellin transform of a function );( θrf , in 
polar coordinates, is given by relation (1), with 

Zq∈ , Cips ∈+=σ (see[19]): 
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In [20], are proposed a set of features invariant 

on geometric transformations: 
 

[ ] [ ] q

f
q

f

s

fff MMMsqMsqI );1();1();0();();( σσσ σ
−

−

=  (4)

 
In order to validate the above-presented concepts 

and to provide an industrial prototype, an automatic 
control system has been realized. It involves an 
Olympus B52 microscope combined with a Corvus 
stage (see Fig. 2), which allows scanning an entire 
optical component. 50x magnification is used, that 
leads to microscopic 1.77mm x 1.33 mm fields and 
1.28µm x 1.28µm sized pixels.  

 
Fig. 2 – The Olympus microscope. 
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Fig. 3 – dy-dx representation of the three obtained 
SOMs for database B (mean □ and standard deviation 

◊ of dx are also represented).  
Top: SOM; middle: CCA; bottom: CDA. 

 
The defects detection methods are implemented 

in the system in an efficient way, so the prototype 
permits to check optical devices within execution 
times in adequacy with production conditions 
(typically 10 mm x 10 mm surface measured in one 
minute). These facilities were used to acquire a great 
number of defects images. These images were coded 
using Fourier-Mellin transform with 1=σ  and 

{ });1()0;0/(),(),( PpPQqPpqpqpq ≤≤−≤≤∪≤≤=∈  

where 1=P  and 2=Q  (see Equation 3 and 4). Such 
orders of Mellin resp. Fourier spectrum (P resp. Q 
values) form a first compromise between the size 
and the quality of the representation and provides a 
set of 13 features for each item. Three experiments 
called A, B, C were carried out, using two optical 
devices. Table 1 shows the different parameters 
corresponding to these experiments. It’s important to 
note that, in order to avoid false classes learning, 
items images depicting microscopic field boundaries 
or two (or more) different defects are discarded from 
used database. First, since database C is issued from 
a cleaned device, it’s constituted with almost only 
“permanent” defect. And because database B came 
from the measurement of the same optical device but 
without cleaning phase, it’s constituted with the 
same type of “permanent” defects but also with 
“abiding” ones.  

Table 1. Description of the three experiments 
supplying studied databases. 

Database A B C 

Optical Device 
Identifiant 1 2 2 

Cleaning NO NO YES 

Number of studied 
microscopic fields 1178 605 529 

Correspondant studied 
area 28 14 12.5 

Number of items in the 
learning database 3865 1910 1544 

 
In the aim of studying structure of space 

described by database when reducing its dimension, 
we perform some experiments. First a reduction of 
dimensionality from 13 (raw dimensionality) to 2 of 
the database B was performed using SOM, CCA and 
CDA, in order to compare projection quality of these 
three techniques. Then the entire database C was 
projected into the obtained space in order to evaluate 
the pertinence of dimensionality reduction for 
discrimination between “correctable” and “abiding” 
defects. Secondly, a synthetic classification task, 
involving aforementioned databases and Multilayer 
Perceptron artificial neural network, was carried out 
with and without dimensionality reduction phase 
with the aim to demonstrate usefulness of such pre-
processing phase. Finally, we validate the previous 
results by studying the impact of different 
dimensionality reduction on a real problem: an 
expert was asked to define two different real classes 
of defects and a MLP was used to discriminate 
between these two classes. 
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4. EXPERIMENTAL RESULTS AND 

ANALYSIS 
4.1 QUALITY OF PROJECTION 

Dimensionality reduction has been performed 
using the three aforementioned techniques, SOM, 
ACC and CDA on database B. To compare the 
results of the three experiments, the 2-D projections 
issued from CCA and CDA were processed by a 
SOM, using the same shape of grid (20x8) as in the 
SOM experiment. An important point is that SOM is 
just used, in these two past cases, to perform a 
quantization and not for dimension reduction, since 
it works on a 2 dimension space. Therefore, we can 
directly compare dimension reduction ability of the 
different techniques by comparing these maps with 
map obtained by applying SOM’s algorithm on raw 
data. The quality evaluation of non-linear projection 
of the data space onto the neurons grid space is 
performed by studying, for each pair of neurons, the 
dx distance between these two neurons in the data 
space, versus the dy distance between these two 
neurons in the grid space [21]. For each couple of 
neurons );( ji we draw a point )),();,(( jidxjidy  

where ji xxjidx rr
−=),(  and ji yyjidy rr

−=),( . 

kxr (resp. kyr ) is the vector of features corresponding 
to the k-th neuron in the data space (resp. in the grid 
space). If the topology of the data space is not well 
respected, dx is not related to dy and we obtain a 
diffuse cloud of points. On the contrary, if neurons 
organization is correct, the drawn points are almost 
arranged along a straight line. 

First, in Fig. 3, cloud of points is more diffuse for 
SOM than in the case of CCA, and the curve 
constituted by dx averages for each dy less 
uniformly monotonic. It reveals the fact that the 
CCA performs better than SOM, while 
approximately the same quantity is minimized. The 
cloud obtained for CDA is quite different because dy 
is related to curvilinear distance and not Euclidean 
one. The figure is however the same as for CCA for 
little dy value, because in these cases Euclidean 
distance is a good approximate of curvilinear one 
(and therefore distribution is locally linear).  

 
4.2 ANALYSIS OF POSSIBLE IMPACT ON 
CLASSIFICATION TASKS 

We now consider the database C (only 
“permanent” defects) and project its items onto the 
three previously obtained SOMs. We perform also 
an equivalent experiment on raw data (13-
dimension), using k-means algorithm with 
k=20x8=160. Since k-means algorithm has identical 
behaviour as SOM, except concerning 

neighbourhood constraints, it has the same effect on 
projected items distribution but doesn’t allow visual 
representation. Projected items distribution after 
SOM (Fig. 3), CCA (Fig. 4) and CDA (Fig. 5) 
dimension reduction are studied. In these figures, the 
equalized grey level depicts the number of projected 
items for each SOM’s cell (this number is also 
reported in the cell).  

In table 2 are reported some characteristic values 
of distributions “homogeneity”: entropy and 
standard deviation of projected items number in each 
cell; number of empty or quasi-empty cells (less 
than three projected items). Maps and numerical 
measurements for SOM and CCA are comparable 
and therefore these techniques are equivalent for the 
considered problem. CCA is however easier to 
perform (no a priori knowledge or difficult choice) 
and provide more information (continuous 
projection). CDA offers the same advantages as 
CCA, but it seems to be more appropriate for pre-
processing before classification. Corresponding map 
depicts indeed more specific “areas” for database C 
projected defects.  

Table 2. Different measurements characterizing the 
projections distribution of database C items 

(permanent defects). 

Dimensionality 
reduction technique None SOM CCA CDA 

Standard-deviation of 
distribution 8.72 5.78 5.72 7.04 

Entropy of defects 
distribution 2.055 2.114 2.121 2.088

Number of empty cells 15 9 5 7 

Number of cells with 
less than 3 defects 30 26 20 32 

 
This intuition is confirmed by numerical 

measurements: entropy is lower than in SOM and 
CCA cases (better organization), standard deviation 
is higher (better contrast between full and empty 
areas) and there are more quasi-empty cells. We 
think that this organization is a foremost guarantee 
for the dimension reduction to allow a better 
classification. We can also remark that results 
obtained with CDA are fairly similar as those with 
raw data; it shows that little information is lost while 
reducing dimensionality. 

 
 



Matthieu Voiry, Kurosh Madani, Véronique Amarger, Joël Bernier / Computing, 2009, Vol. 8, Issue 1, 32-42 
 

 37

 
 

Fig. 4. Distribution of projected items in SOM map. (SOM reduction dimension) 

 
 

 
 

Fig. 5. Distribution of projected items in SOM map. (CCA reduction dimension) 

 
 

 
 

Fig. 6. Distribution of projected items in SOM map. (CDA reduction dimension) 
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4.3 EXPERIMENTATION ON A REAL 
PROBLEM 

In order to evaluate the benefits of using 
dimensionality reduction in our diagnosis system, 
we performed a series of experiments involving a 
real classification task. Items of the databases A and 
B were labelled by an expert with two different 
labels: “dust” (class 1) and “other defects” (class 2). 
Considering our final goal, this is the most important 
distinction which the diagnosis system must be able 
to do. Table 3 shows items repartition between the 
two defined classes. 

Table 3. Description of real classification databases. 

Database 
Coming 

from 
database 

Total 
number 
of items 

Label 
 1  

items 

Label 
2 items

1 A 3865 275 3590 

2 B 1910 184 1726 

 
Using these databases, a number of experiments 

were carried out, in accordance with a same 
procedure. It involved a multilayer perceptron with n 
input neurons, 35 neurons in one hidden layer, and 2 
output neurons (n-35-2 MLP). First this artificial 
neural network was trained for discrimination task 
between classes 1 and 2, using database B. This 
training phase used BFGS (Broyden, Fletcher, 
Goldfarb, and Shanno) with Bayesian regularization 
algorithm, and was achieved 5 times. Subsequently, 
the generalization ability of obtained neural network 
was processed using database A. Since database A 
and B issued from different optical devices, such 
generalization results are significant. Following this 
procedure, 28 different experiments were conducted 
with the aim of studying the global classification 
performance and the impact of SOM, ACC and 
CDA dimensionality reduction on this performance. 
First experiment used original Fourrier-Mellin 
issued features (13-dimensional), the second used 
2D SOM reduced features, and the others used the 
original features after ACC or CDA n-dimensional 
space reduction (with n varying between 2 and 13). 

Fig. 7 depicts classification global performances 
(calculated by averaging percentage of well-
classified items for the 5 trainings) for the 28 
different experiments (for different CDA and CCA 
issued data dimensionality reduction, for 2D SOM 
data dimensionality reduction and using raw data). 
Fig. 8 and Fig. 9 show the class 1 (“dust defects”) 
and the class 2 (“other defects”) classification 
performances respectively. In this two figures the 
standard deviation of the 5 experiments results are 

also represented. 
 

4.4 DISCUSSION 
First, these experiments show that CDA and 

CCA generate almost the same performances (CDA 
is although slightly better) but outperform SOM 
issued results (see Table 4) for 2D data 
dimensionality reduction. It is due to the better 
quality and the continuous nature of the projection 
provided by these techniques. Thus, it confirms the 
previous results presented in this paper.  

Table 4. Classification performances for the three 
different techniques, when reducing data 

dimensionality down to 2. 

Dimensionality 
Reduction 
Technique 

SOM CCA  CDA  

Class 1 Recognition 63.9 % 61.9 % 56.8 % 

Class 2 
Recognition 91.6 % 96.9 % 97.7 % 

Global Performance 89.7 % 94.4 % 94.8 % 

 
Secondly, we can remark (see Table 5) that 

equivalent performances can be obtained using low-
dimensional data instead of unprocessed defects 
representations (for example using 6-dimensional 
CDA or 8-dimensional CCA issued representation 
instead of raw 13-dimensional representation).  

Table 5. Classification performances with raw data, 
CDA and CCA issued data. For CCA and CDA, 

results are given for the data dimensionality which 
allows the better global performance.  

Used Data Raw CCA 
Issued 

CDA 
Issued 

Data 
Dimensionality  13 8 6 

Class 1 Recognition 70.2 % 63.9 % 62.0 % 

Class 2 
Recognition 97.2 % 97.2 % 97.7 % 

Global 
Performance 95.3 % 94.8 % 95.1 % 
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Fig. 7. Classification global performances. 
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Fig. 8. Class 1 (“dust defects”) classification performances. Standard deviation of the 5 experiments results are 

also represented. 
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Fig. 9. Class 2 (“other defects”) classification performances. Standard deviation of the 5 experiments results are 

also represented. 
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As a consequence neural architecture complexity 
and therefore processing time can be saved using 
dimensionality reduction, while keeping 
performance level. Moreover, obtained scores are 
satisfactory: about 65% of “dust” defects are well-
recognized (this can be enough for aimed 
application) as well as about 97% of other defects 
(the few 3% errors can however pose problems 
because every “permanent” defect has to be 
reported). Furthermore, we think that this significant 
performances difference between class 1 and class 2 
recognition performances is due to the fact that class 
1 is underrepresented in learning database. On 
another hand, obtained results show that the 
compromise between these two different 
performances can be managed by choosing an 
adequate data final dimension.  

Finally, we can see in Fig. 8 and 9 that standard 
deviation values are relatively small, what’s a sign 
of the training phase quality. In addition, 
performance in class 1 recognition is relatively low 
when reducing data dimensionality down to two 
(there’s probably no more enough information to 
correctly classify “dust” defects). But it increases 
steadily until 5-dimensional CDA issued space. This 
result agrees with estimated items distribution 
intrinsic dimension between 5 and 6 (estimation 
used Grassberger-Procaccia [22] modified algorithm 
[23]). It’s interesting to note that the global 
performances are optimal for such a final 
dimensionality using CDA (about 95% of well-
classified defects what is equivalent to performances 
obtained when using raw data). This level of 
performance is reached as well with 10 and 11-
dimensional CDA reduction and only in these cases. 
This last point will be studied in greater detail in 
another paper. 

 
5. CONCLUSION 

A reliable diagnosis of aesthetic flaws in high-
quality optical devices is a crucial task to ensure 
products’ nominal specification and to enhance the 
production quality by studying the impact of the 
process on such defects. To ensure a reliable 
diagnosis, an automatic classification system is 
needed in order to discriminate the “false” defects 
(correctable defects) from “abiding” (permanent) 
ones. Unfortunately relevant data extracted from raw 
Nomarski image during defects detection phase are 
high dimensional. This can have harmful effect on 
behaviors of artificial neural networks which are 
suitable to perform such a challenging classification. 
Reducing the dimension of the data to a smaller 
value can decrease the problems related to high 
dimension. In this paper we have compared different 
techniques, SOM, CCA and CDA which permit such 

dimensionality reduction and evaluated their 
possible impact on classification tasks involving real 
industrial data. CDA seems to be the most suitable 
technique and we have demonstrated its ability to 
enhance performances (in terms of time and/or well-
classified items) in a real classification problem. 
Next phase of this work will deal with classification 
tasks involving more classes. We want also use 
much more Fourier-Mellin invariants, because we 
think that it would improve classification 
performance by supplying additional information. 
CDA based dimensionality reduction technique 
would in this case be a foremost step to keep 
reasonable classification system’s complexity. 
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