
N. A. Bahnasawy, G. M. Attiya, M. Mosa, M. A. Koutb / Computing, 2009, Vol. 8, Issue 2, 50-57

 50

A MODIFIED A* ALGORITHM FOR ALLOCATING TASK IN
HETEROGENEOUS DISTIRBUTED COMPUTING SYSTEMS

Nirmeen A. Bahnasawy 1), Gamal M. Attiya 2), Mervat Mosa 1), Magdy A. Koutb 2)

1) Dept. of Computer Science and Engineering, Faculty of Engineering, Menoufia University

nirmeen_a_wahab@hotmail.com, nirmeen23875@yahoo.com
2) Dept. of Automatic Control Engineering, Faculty of Engineering, Menoufia University

Abstract: Distributed computing can be used to solve large scale scientific and engineering problems. A parallel
application could be divided into a number of tasks and executed concurrently on different computers in the system.
This paper provides an optimal task assignment algorithm under memory constraints to minimize required time of
finishing a parallel application. The proposed algorithm is based on the optimal assignment sequential search (OASS)
of the A* algorithm with additional modifications. This modified algorithm yields optimal solution, lower time
complexity, reduces the turnaround time of the application and considerably faster compared with the sequential search
algorithm.

Keywords: parallel processing, task assignment, distributed computers, heterogeneous processors.

1. INTRODUCTION
A distributed computing system is characterized

by a topology, availability of computers and
communication resources. This system consists of
heterogeneous computers interconnected through a
communication network. Each computer has
computation facilities, its own memory,
communication capacity and propagation delay
between two computers [5]. Such a system can be
employed to solve large scale scientific and
engineering problems, where, an application could
be divided into a number of tasks and executed
concurrently on different computers in the system.
The distribution of tasks onto different computers of
the system is called allocation problem. Such a
problem is known to be NP-hard, except in a few
special cases with strict assumptions.

Several approaches were by many researchers to
solve the allocation problem. In [3,8], approaches
are developed for allocating and scheduling tasks of
a parallel application among computing sites of
distributed computing system to achieve some
objectives under defined constraints. Shen and Tsia
[18] first used the A*algorithm for the task-
assignment problem. They ordered the tasks
considered for assignment simply starting with task
1 at the tree’s first level, task 2 at the second and so
on. Kafel [10] considered the assignment problem to
minimize the parallel program completion time, they
proposed algorithm based on A* algorithm called

“Optimal Assignment Sequential Search” (OASS).
Also an optimal static scheduling of an arbitrary
structured task graph to an arbitrary number of
homogeneous processors is discussed on the
A*search technique with a computationally efficient
cost function and number of state-space pruning
technique [16]. Note that, A* is a best-first search
algorithm, which has been used extensively in
artificial intelligence problem solving. Programmers
can use the algorithm to search a tree or a graph.

The problem of minimizing the total cost subject
to both memory and processing capacity constraint
is discussed in [14] by taking into account the
limited capacities of the resources that constitute the
communication network (LANs, WANs, and direct
link). Task allocation problem is discussed also in
[1] where, A* algorithm (A*RS) can be
implemented to improve the performance of the
earlier algorithm then allocate the multiple tasks that
requires more time and space for the solution.

In [5], a simulated annealing technique is
developed to quickly find a near optimal solution to
make the system more reliable in inter processor
communication times under conditions imposed by
both the application and system resources. In [12], a
genetic algorithm (GA) is developed to finding
approximate solutions for problems with very large
decision spaces by applying it on the task matching
problem independent task. In [16, 17], a new hybrid
genetic algorithm is used to solve the task
scheduling problem in heterogeneous computing

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

N. A. Bahnasawy, G. M. Attiya, M. Mosa, M. A. Koutb / Computing, 2009, Vol. 8, Issue 2, 50-57

 51

system which is guarantee that every feasible
schedule is reachable with some probability. Many
algorithms are compared, evaluated, and get
analyzed to present the scheduling task problem [7].
Heuristic algorithm [14] showed that the most
effective non-evolutionary known method for
scheduling independent tasks in heterogeneous
environment is the min-min heuristic.

In this paper, the main objective is to study task
assignment problem in distributed systems
comprising networked heterogeneous computers and
then develop a new technique for obtaining optimal
solution to the given problem to minimize the turn
around time of the application A comparison is done
between the (OASS) and the modified algorithm in
assigning a given tasks to a network of processors to
minimize the required time for program completion.

Note that, minimizing the turn around time of a
parallel application can be achieved only when the
work load is balancing distributed on the different
processors of the system

The rest of this paper is organized as follow.
Section 2 defines the task assignment problem.
Section 3 describes task assignment using optimal
sequential search of A* algorithm. Section 4
presents the modified algorithm. Section 5 presents
the simulation result, and finally section 6 presents
the conclusions.

2. PROBLEM DEFINITION

Task allocation problem may be stated informally
as the problem of allocating tasks of a parallel
application onto computers of distributed computing

system to optimize some performance measures as
finishing time [4,6].

In solving the allocation problem, we use the task
interacting graph model, in which the parallel
program is represented by an undirected graph: GT =
(VT, ET), where VT is the set of vertices, {t1, t2, ...,
tm}, and ET is a set of edges labeled by the
communication requirements among tasks. We can
also represent the network of processors as an
undirected graph, where vertices represent the
processors, and the edges represent the processors’
communication links. We represent the
interconnection network of n processors, {p1, p2, ...,
pn}, by an n×n link matrix L, where an entry Lij is 1,
if processors i and j are directly connected, and 0
otherwise. We do not consider the case where i and j
are not directly connected. We can execute a task t1
from the set VT on any one of the system’s n
processors. Each task has an associated execution
cost on a given processor. A matrix X gives task
execution costs, where Xip is the execution cost of
task i on processor p. Two tasks, ti and tj, executing
on two different processors, incur a communications
cost when they need to exchange data. Task
mapping will assign two communicating tasks to the
same processor or to two different, directly
connected processors. A matrix C represents
communication among tasks, where Cij is the
communication cost between tasks i and j, if they
reside on two different processors.

(a) (b) (c)

Fig. 1 – An Example (a) a task graph (b) processor Network (c) Execution cost matrix

A processor’s load comprises all the execution

and communication costs associated with its
assigned tasks. The time needed by the heaviest-
loaded processor will determine the entire program’s
completion time. The task-assignment problem must
find a mapping of the set of m tasks to n processors
that will minimize program completion time. Task
mapping, or assignment to processors, is given by a

matrix A, where Aip is 1, if task i is assigned to
processor p, and 0 otherwise. The following
equation then gives the load on p:

N. A. Bahnasawy, G. M. Attiya, M. Mosa, M. A. Koutb / Computing, 2009, Vol. 8, Issue 2, 50-57

 52

Z = ∑∑∑∑
≠
= = ==

+•
n

pq
q

m

i

m

j
pqjqipij

m

i
ipij LAACAX

)(
1 1 11

)(

The first part of the equation is the total

execution cost of the tasks assigned to p. The second
part is the communication overhead on p. Aip and Ajq
indicate that task i and j are assigned to two different
processors (p and q), and Lpq indicates that p and q
are directly connected. To find the processor with
the heaviest load, you need to compute the load on
each of the n processors. The optimal assignment out
of all possible assignments will allot the minimum
load to the heaviest-loaded processor.

3. SEQUENTIAL SEARCH

ALGORITHMS (OASS)
Task assignment using the A* algorithm will be

occurred as follows. For a tree search, it starts from
the root, called the start node (usually a null solution
of the problem). Intermediate tree nodes represent
the partial solutions, and leaf nodes represent the
complete solutions or goals. A cost function f
computes each node’s associated cost. The value of f
for a node n, which is the estimated cost of the
cheapest solution through n, is computed as: f(n) =
g(n)+ b(n), where g(n) is the search-path cost from

the start node to the current node n and b(n) is a
lower-bound estimate of the path cost from n to the
goal node (solution). To expand a node means to
generate all of its successors or children and to
compute the f value for each of them.

The nodes are ordered for search according to
cost; that is, the algorithm first selects the node with
the minimum expansion cost. The algorithm
maintains a sorted list, called OPEN, of nodes
(according to their f values) and always selects a
node with the best expansion cost. Because the
algorithm always selects the best-cost node, it
guarantees an optimal solution.

For the task-assignment problem under
consideration,

• The search space is a tree;
• The initial node (the root) is a null

assignment node—that is, no task is
assigned;

• Intermediate nodes are partial-assignment
nodes—that is, only some tasks are
assigned; and

• A solution (goal) node is a complete
assignment node—that is, all the tasks are
assigned.

Generate a random solution
 Let S_Opt be the cost of this solution
 Build the initial node s and insert it into the list OPEN
 Set f(s) = 0
 Repeat
 Select the node n with smallest f value.
 Repeat
 Make memory test step
 If (n is true)
 if (n is not a Solution)
 Generate successors of n
 for each successor node n’ do
 if (n’ is not at the last level in the search tree)
 f(n’) = g(n’) + b(n’)
 else f(n’) = g(n’)
 if (f(n’) <= S_Opt)
 Insert n’ into OPEN
 endif
 end for
 else select (n+1)
 end if
 if (n is a Solution)
 Report the Solution and stop
 Until (n is a Solution) or (OPEN is empty)

Fig. 2 – The Optimal Assignment with Sequential Search algorithm (OASS)

N. A. Bahnasawy, G. M. Attiya, M. Mosa, M. A. Koutb / Computing, 2009, Vol. 8, Issue 2, 50-57

 53

To compute the cost function, g(n) is the cost of
partial assignment (A) at node n the load on the
heaviest-loaded (p); this can be done using the
equation from the previous section. For the
computation of b(n), two sets Tp (the set of tasks that
are assigned to the heaviest-loaded p) and U (the set
of tasks that are unassigned at this stage of the
search and have one or more communication link
with any task in set Tp) are defined. Each task ti in U
will be assigned either to p or any other processor q
that has a direct communication link with p. So,
associate two kinds of costs with each ti’s
assignment: either Xip (the execution cost of ti on p)
or the sum of the communication costs of all the
tasks in set Tp that have a link with ti. This implies
that to consider ti’s assignment, we must decide
whether ti should go to p or not (by taking these two
cases’ minimum cost). Let cost (ti) be the minimum
of these two costs, then we compute b(n) as:

∑
∈

=
Ut

i
i

ttnb)(cos)(

The A* algorithm for the task-assignment

problem has been used early. The tasks are ordered
considered for assignment simply by starting with
task 1 at the tree’s first level, task 2 at the second,
and so on.

OASS algorithm [10] uses the A* search
technique, but with two distinct features. First, it
generates a random solution and prunes all the nodes
with costs higher than this solution during the
optimal-solution search see Figure 2. This is because
the optimal solution cost will never be higher than
this random-solution cost. Pruning unnecessary
nodes not only saves memory, but also saves the
time required to insert the nodes into OPEN.
Second, the algorithm sets the value of f(n) equal to
g(n) for all leaf nodes, because for a leaf node n,
b(n) is equal to 0. This avoids the unnecessary
computation of b(n) at the leaf nodes.

4. THE MODIFIED ALGORITHM

In this section a new task assignment algorithm is
presented. The basic idea is to choose the task to be
assigned at each level. The assignment problem is
represented as A*algorithm for traversing the tree
nodes searching for an optimal solution.

The proposed algorithm handles tasks at the tree
levels according to the task of higher connectivity,
i.e., the task with the largest number of neighbors
and then test the memory constrains, This constrain
shows; for an assignment A, the total memory
required by all tasks assigned to a processor p must
be less than or equal to the available memory

capacity of the processor p. Let mi denotes the
amount of memory required for processing a task i
and Mp defines the available memory capacity at the
processor p, then the following inequality must hold
at each processor p in the system:

pMAm pi ipi ∀≤∑

i.e., before distribution, the program compares
memory capacities of the chosen task to be run on
the chosen processor ; if their memory capacities are
equal or memory capacity of task is less than the
memory capacity of processor or memory capacity
of processor permits to run that task, the program
will complete, and if the memory capacity of task is
larger than the memory capacity of processor, the
program will search for another one so, the chosen
task will choose the next processor to make the same
test and neglect that one which is not fit then
generate node, and so on until the program
complete; this step is called memory constrain step
(1) as illustrated in Figure 3.

The algorithm starts by reordering the application
tasks according to the task of more connectivity, i.e.,
calculate the sum of the communication lines for all
tasks then choose the highest one, if two tasks have
the same connectivity degree; it considers the task of
higher communication requirements, then it
generates a random solution and prunes all the nodes
with costs higher than this solution during the
optimal-solution search, this is because the optimal
solution cost will never be higher than this random-
solution cost. Pruning unnecessary nodes not only
saves memory, but also saves the time required to
insert the nodes into OPEN, also the algorithm sets
the value of f(n) equal to g(n) for all leaf nodes,
because for a leaf node n, b(n) is equal to 0, this
avoids the unnecessary computation of b(n) at the
leaf nodes.

Our proposed algorithm is effective in reducing
the number of nodes generated (and that are
expanded) without sacrificing the optimality criteria.
This property allows to reduce mathematical
computations such as computing f(n) for latest
nodes.

The proposed algorithm will be applied on the
previous example to study in details the comparison
between it and the sequential search algorithm.

Consider (Figure 1), by applying the idea of the
proposed algorithm in (Figure 3). The new order of
tasks list is obtained as follow: {t2,t0,t1,t4,t3}, the
number of resulting node expansion is reduced
compared with sequential search algorithm.

N. A. Bahnasawy, G. M. Attiya, M. Mosa, M. A. Koutb / Computing, 2009, Vol. 8, Issue 2, 50-57

 54

Generate a random solution
 Let S_Opt be the cost of this solution
For (i=0;i<=n;++)
 Compute connectivity degree and communication requirements.
 If (ti connectivity degree>ti+1 connectivity degree)
 Set ti in ordered task list
 If (ti connectivity degree= ti+1 connectivity degree)
 Compute the communication requirements.
 If (ti communication requirements>ti+1communication requirements)
 Set ti in ordered task list
 Else
 If (ti communication requirements=ti+1 communication requirements)
 Set ti in ordered task list
 Else
 Set ti+1in ordered task list
 Else
 Set ti+1in ordered task list
End for
 Build the initial node s and insert it into the list OPEN
 Set f(s) = 0
 Repeat
 Select the node n with smallest f value.
 Make memory test step
 If(n is true)
 if (n is not a Solution)
 Generate successors of n
 for each successor node n’ do
 if (n’ is not at the last level in the search tree)
 f(n’) = g(n’) + b(n’)
 else f(n’) = g(n’)
 if (f(n’) <= S_Opt)
 Insert n’ into OPEN

 Else select n+1
 end for
 end if
 if (n is a Solution)
 Report the Solution and stop
 Until (n is a Solution) or (OPEN is empty)

Fig. 3 – The Proposed Algorithm

Consider t2 with three communication links, t0

which has two communication links like: t0, t1, t4,
then the highest communication requirements is
chosen, and so on. We get 11 nodes are generated by
applying the modified algorithm When OASS
algorithm is applied on the same example, 14 nodes
are generated compared with these results yield the
same optimal solution. This reduction in results
saves memory, increase speedup and the
performance of program. The modified algorithm
has considerably fewer memory requirements than
OASS algorithm.

5. SIMULATION REULTS

To test the performance of the algorithm first,
simulated by C# ver.5.1and then, a simulation
environment in acer core due processor with 1.73

speedup.
To test the modified algorithm the data collect for

task graphs of 2 to 30 nodes and processor graphs of
2, 4, 8 nodes. Figure 4 shows node generated of
A*O, OASS and modified algorithm on 4 processor
nodes. As a result, the number of generating nodes
decreases, the running time of program decreases, so
the system required memory decreases and then
memory efficiency increases in Malg.

N. A. Bahnasawy, G. M. Attiya, M. Mosa, M. A. Koutb / Computing, 2009, Vol. 8, Issue 2, 50-57

 55

Fig. 4 – Generated nodes case of 4 processors

We also obtain a comparison between the same
three algorithms in the running time parameter. The
modified algorithm shows a substantial
improvement over (OASS) algorithm. Figure 5
shows collecting data for task graph of 3 to 28 tasks
and processor graph of four nodes, the results of
running times in seconds are obtained, when running
time decreased, the speedup of program increased
so, the modified algorithm behaves better
performance than (OASS) algorithm.

Fig. 5 – Runing times using 4processors

Figures 6 (a, b, c) show generated nodes of A*O,
OASS and modified algorithm on (2, 4, 8) processor
nodes respectively, the modified algorithm shows a
substantial improvement over (OASS) algorithm and
A*O algorithm.

Fig. 6(a) – Generated nodes caseof 2 processors

Fig. 6(b) – Generated nodes case of 4 processors

Fig. 6(c) – Generated nodes case of 8 processors

In addition, the improvement in the modified

algorithm performance, it efficiently uses the system
memory as shown in Figure (7).As the total number
of nodes decreases, the required memory saving
decreases. Note that, the saving rate is defined as:

(1-(G(Malg.or OASSalg) / GA*alg)),

Where, G(M.alg.or OASS alg) is the actually number of
nodes generated by the two algorithms with respect
to A* algorithm.

Figures 7 (a, b, c) show the memory saving rates
on (2, 4, 8) processor nodes respective

Fig. 7(a) – Memoryrates case of 2 processors

N. A. Bahnasawy, G. M. Attiya, M. Mosa, M. A. Koutb / Computing, 2009, Vol. 8, Issue 2, 50-57

 56

Fig. 7(b) – Memory rates case of 4processors

Fig. 7(c) – Memory rates case of 8 processors

Figure (8) presents simulation results of node
generated from the previous three algorithms on 4
processor nodes taking into account the memory
constrains, if it is included or excluded.

Fig. 8(a) – Simulation results of containing memory

conditions of A*O

Fig. 8(b) – Simulation results of containing memory

conditions of OASS

Fig. 8(c) – Simulation results of containing memory

conditions of M.Alg.

6. CONCLUSIONS

In this paper, the task allocation problem is
studied and a new algorithm for allocating
application graphs on to a system of heterogeneous
processors is presented. The performance of the
proposed algorithm has been investigated in terms of
memory efficiency, running time, and saving
memory. This has been carried out by using a set of
randomly generated application graphs under
different conditions like; the communication data
rates, the capacities memory of various processors
and tasks, and the weight cost of running tasks.

Based on the experimental study, the simulation
results show, the proposed algorithm is superior in
terms of efficiency and quality in using the memory
and also speedup compared with (OASS) which are
most important performance measures of evaluating
a parallel computer system.

7. REFERENCES

[1] A. K. Tripathi, B. K. Sarker, N. Kumar and D. P.
Vidyanhi, “Multiple Task Allocation with Load
Considerations”, Int. Journal of Information and
Computing Science (IJICS), Vo1. 3, No, pp.3634,
2000.

[2] Gamal Attiya and Yskandar Hamam, “Optimal
Allocation of Tasks onto Networked
Heterogeneous Computers Using Minimax
Criterion”, Proceedings of International Network
Optimization Conference (INOC,03), pp. 25-30,
Evry/Paris, France, 2003.

[3] Gamal Attiya and Yskandar Hamam, “Hybrid
Algorithm for Mapping Parallel Applications in
Distributed Systems”, Fifth International
Conference on PRAM, Poland, 7-10 September
2003.

[4] Gamal Attiya and Yskandar Hamam,
“Performance Oriented Allocation in
Heterogeneous Distributed Systems”, European
Simulation and Modeling (ESM 2003)
Conference, University of Naples II, Naples,
Italy, pp. 27-29 October 2003.

N. A. Bahnasawy, G. M. Attiya, M. Mosa, M. A. Koutb / Computing, 2009, Vol. 8, Issue 2, 50-57

 57

[5] Gamal Attiya and Yskandar Hamam, “Task
Allocation for Maximizing Reliability of
Distributed Systems: A simulated Annealing
Approach”, J. Parallel Distributed Computer, 66,
pp. 1259-1266, 2006.

[6] Haluk Topcuoglu, Salim Hariri, and Min-You
Wu, “Performance- Effective and Low-
Complexity Task Scheduling for Heterogeneous
Computing”, (IEEE Transactions on Distributed
Systems, vol. 13. no. 3 march 2002.

[7] I. Ahmed, Y Kwak, and M.-Y. Wu, “Analysis,
Evaluation, and Comparison of Algorithms for
Scheduling Task Graphs on Parallel Processors”,
2nd Int’l Symposium on Parallel architectures,
Algorithms, and Networks, I-SPAN. Beijing.
China. Proc. Of the 1996.

[8] Kamer Kaya a, Bora Ucar a, Cevdet Aykanat,
Murat Ikinci, “Task assignment in heterogeneous
computing systems” J. Parallel Distributed
Computers. 66, pp. 32 – 46, (2006).

[9] L. W. Dowdy, E.Rosti, E. Smirni, G. Serazzi, and
K. C. Sevcik, “Processor Saving Scheduling
Policies for Multiprocessor Systems” IEEE Trans.
Comput., vol. 47, no. 2, Feb 1998.

[10] M. Kafil, “An Optimal Task Assignment
Algorithms in Distributed Computing Systems”,
IEEE Concurrency, 98, pp 42-49, September
1998.

[11] M. Mezmaz, N. Melab, and E.-G. Talbi, “An
Efficient Load Balancing Strategy for Grid-Based
Branch and Bound Algorithm”, Parallel
Computing 33, pp. 302-313. February 2007.

[12] S. Woo, S. Yang, S. Kim, and T. Han, “Task
Scheduling in Distributed computing Systems
with a Genetic Algorithm”, IEEE, New York,
1997.

[13] Sih, E.A.Lee, “A Compile-Time Scheduling
Heuristic for Interconnection-Constrained
Heterogeneous Processor Architectures”, IEEE
Trans. Parallel Distributed Systems4, pp. 175-
186, February 1993.

[14] W. Boyer, G. Hura, “A New Min-Span Heuristic
Algorithm for Task Scheduling in Heterogeneous
Systems” Proceedings of the Sixth Biennial World
conference On Integrated Design and Process
Technology, 23. pp. 69, June 2002.

[15] Yskandar Hamam, Khalil S. Hindi, “Assignment
of Program Modules to Processors: A Simulated
Annealing Approach”, European Journal of
Operational Research 122, pp. 509-513. 2000.

[16] Yu-Kwong Kwok, Ishfaq Ahmad, “On
Multiprocessor Task Scheduling Using Efficient
State Space Search Approaches”, J. Parallel
Distributed Computing 65, pp. 1515-1532,
(2005).

[17] Yi-Wen Zhong, Jian-Gang Yang, and Heng-Nian,
“A Hybrid Genetic Algorithm for Tasks

Scheduling in Heterogeneous Computing
Systems” Proceedings of the Third International
Conference on Machine Learning and
Cybernetics, Shanghai, PP. 26-29, August 2004.

[18] Z.-C. Shen and W.-H. Tsai, “A Graph Matching
Approach to Optimal Task Assignment in
Distributed Computing System Using a Minimax
Criterion”, IEEE Trans. Computers, Vol. C-34,
No. 3, Mar., pp. 197–203 1985.

Nirmeen A. Wahab Al
Bahnasawy is a PhD candidate
in the Dept. of Computer
Science and Engineering,
Faculty of electronic Engi-
neering, Menoufia University,
Egypt. Her research interests
include parallel processing,

distributed computing, task allocation and
scheduling.

Mervat Mosa is PhD in the Dept. of Computer
Science and Engineering, Faculty of electronic
Engineering, Menoufia University, Egypt. Her
research interests include parallel processing and
optical computing.

Gamal M. ATTIYA graduated
in 1993 and obtained his MSc
degree in computer science
and engineering from the
Menufiya University, Egypt, in
1999. He received PhD degree
in computer engineering from
the University of Marne-La-
Vallée, Paris-France, in 2004.

He is currently Lecturer at the department of
Computer Science and Engineering, Faculty of
Electronic Engineering, Menufiya University, Egypt.
His main research interests include distributed
computing, task allocation and scheduling, computer
networks and protocols, congestion control, QoS,
and multimedia networking.

Magdy A. Koutb received the Eng. Degree from the
university of Menofiya, Egypt, in 1977 and
M.Sc.degree in 1981 from the university of AlAzhar,
Egypt, and the Ph.D. degree from the university of
Silesia, Poland in 1985. He has been a Professor
since 1997 at the Faculty of Electronic Eng.,
Menoufiya university. In 2003 he was appointed as
Vice-Dean of Post-Graduate Studies and Cultural
affairs of the same faculty. He has extensive
experience in Computer Engineering and Industrial
Electronics. His main research interests include
distributed systems, network security and intelligent
control systems.

