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Abstract: The paper describes a hardware system carrying out point summation on elliptic curves. The implementation 
of basic function, which is modulo multiplication of huge integrals, is based on Krestenson’s basis. Such a summing 
unit has been used for hardware implementation of Pollard rho-algorithm. The paper also presents the performance of 
the mentioned unit. 
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1. INTRODUCTION 
The need for keeping stored, processed and 

distributed data secret provoked a growing interest 
in cryptographic and identification techniques. An 
essential issue is therefore the safety level provided 
by the cryptographic systems.  

This article concerns gauging of elliptic curve 
(EC) based cryptosystems safety. Elliptic curves 
over finite field GF(2m) and p, GF(p) are commonly 
used for cryptography purposes. Recently it has 
become convenient to use hardware FPGA units 
(Field Programmable Gate Array) for extremely fast 
operations carried out on elliptic curves GF(2m) 
according to the nature of the calculations. 
Information concerning this issue may be found in 
e.g. [1]. The aim of our work was to device a 
hardware unit carrying out operations on elliptic 
curves over finite field GF(p). In order to 
accomplish our goal we have employed an 
unconventional approach: a technique relying on 
Rademacher’s-Krestenson’s basis allows 
multiplication operations to be converted into 
summing ones and taking advantage of previously 
generated tables. Such operations are carried out by 
hardware systems and offer a substantial 
simplification of calculations.  

 
2. ELLIPTIC CURVES AND 

CORRESPONDING ARITHMETIC 
Integrals of expressions in the form of: 

dxdcxbxaxxR ),( 23∫ +++ , (1) 

are called elliptic integrals. The name has been 
derived from an ellipse length calculation. Being 
more specific about elliptic integrals it should be 
stressed that the only integrals of that type are ones 
which may not be calculated in a finite form [2, 3]. 
A curve circumscribed by the following equation is 
a good example of an elliptic curve: 

dcxxy −−= 32 4   (2) 

with a point in infinity O.  
A closer look at the most important grouping 

operation which is the point summation on an 
elliptic curve reveals an issue: assume that points P 
and Q belong to curve E and have respective 
coordinates ),( 11 yxP  and ),( 22 yxQ . Assume that 
point P ≠ Q and P,Q ≠ O. Sum of points P + Q will 
be defined as point ),( 33 yxR  such that a straight 
line drawn through points P and Q intersects with 
the curve in point X = –R, consequently being a 
opposite of R. Adding a point to itself (doubling) is 
clearly described as PPX += . Point coordinates 
equation takes a form of PPPR +== 2 . 

Taking advantage of this equation it is simple to 
define multiplication of a point by an integer. If τ  is 
an integer then PPPP +++= ...τ , where the 
number of added points equals τ .  

At the ending of the theoretical discussion 
consider some basic equations where subtraction is 
defined as addition of a negative 
point )( PQPQ −+=− , and multiplication by a 
negative integer τ− as )( PP ττ −= . 
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Further discussion will focus on elliptic curves 
over finite field GF(2m) and GF(p) where p is a large 
prime number. Elliptic curves over finite field are 
characterized by a finite number of rational points 
belonging to the curve.  

Contemporary cryptography relies on elliptic 
curves over finite field GF(2m) and GF(p). Therefore 
these cases will be addressed further in the paper [2, 
3, 4, 5, 6]. An elliptic curve over finite field GF(p) is 
a modulo p reduction of curve E. 

Let curve E be defined by the equation 

baxxy ++= 32 ,   (3) 

then the elliptic curve [4] over finite field GF(p) will 
be described as: 

.mod)(mod2 pxgpy =   (4) 

The modulo p reduction of curve E coordinates 
has led to a presentation of the coordinates in field 
GF(p).  

 
3. POLLARD RHO PARALLEL METHOD 

OF FINDING DISCRETE LOGARITHM 
The concept of discrete logarithm. The crucial 

issue with reference to ECC (Elliptic Curve 
Cryptography) security is the Elliptic Curve Discrete 
Logarithm Problem (ECDLP) defined in the 
following way: Let E represent an elliptic curve 
defined over a finite field, point P of order m and 
point Q being a multiple of P. The found integer 
l∈<0,m-1> such that Q=l·P [2, 7] is denoted as the 
discrete logarithm of Q to the base P. There are 
numerous approaches to the problem of the elliptic 
curve discrete logarithm one of which is the 
Pollard’s rho Algorithm and its parallel version. 

Pollard has invented several methods of 
calculating discrete logarithms in various 
groups. Pollard rho Method [1, 2] applies a 
singular random walk path until it falls into a 
cycle. Pollard rho Method complexity is of 

order 2
nπ , having the possibility of limiting 

the demand for memory it is currently the best 
known method. In order to speed up the 
calculations a modified method is used. It is 
called Parallel Method as it uses many random 
walk paths realized simultaneously by many 
processors. At present it is the fastest way to 
attack an elliptic curve. In Pollard rho Parallel 
Method we seek an intersection of two paths 
rather than await the cycle completion. The use 
of multiple random walk paths results in a linear 
increase of efficiency. On average it takes as 

long as [7] cn +2
π to find a point, the 

expected value of memory demand equals 
Kn 22

π which may be lowered through 

altering K. Lowering memory demand, 
however, means additional 2K point 
computations (c = 2K) done by the machine. 

 
4. THEORETICAL BASIS FOR 

IMPLEMENTATION OF FPGA SYSTEM 
CARRYING OUT OPERATIONS ON 

ELLIPTIC CURVES GF(P) 
The use of reprogrammable structures with 

implemented Pollard rho parallel algorithm is 
intended to increase effectiveness of calculations 
carried out on elliptic curves over finite field of 
higher orders GF(p). Coordinates calculation for 
consecutive points on elliptic curves forces 
multiplications of large modulo numbers. In such a 
case traditional methods of multiplication fail to be 
satisfactory even with the use of dedicated blocks. 
One solution to this problem is implementation of 
Rademacher-Krestenson’s basis thanks to which 
modulo multiplication may be totally eliminated and 
replaced by adding operations based on previously 
generated tables [8].  

Assume a multiplication of two numbers x and y 
modulo a number p. 

A system of congruence classes (Krestenson’s 
BTL) applied to multiplication operations allows to 
present the result of a multiplication in a matrix 
form. Therefore x and y must be presented as:  

0
0

1
1

2
2

1
1 22...222 xxxxxx i

i
r

r
r

r +++++= −
−

−
− , (5) 

0
0

1
1

2
2

1
1 22...222 yyyyyy j

j
y

r
r

r +++++= −
−

−
−

, (6) 

where r – positioning of x i y and xi, yj = 0,1. There 
is a matrix shown in table 1 which represents a 
product of x and y relative to module p where 

pm ji
ij mod2 += . 

Table 1. Determining the transformation matrix 
module based on Rademacher–Krestenson. 

 yr-1 … yj … y1 y0 

xr-1 mr-1 r-1 … mr-1 j … mr-1 1 mr-1 0 
… … … … … … … 
xi mi r-1 … mij … mi1 mi0 
… … … … … … … 
x1 m1 r-1 … m1j … m11 m10 
x0 m0 r-1 … m0j … m01 m00 
Product of numbers x and y is obtained from 

the following equation: 
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( ) pmpyx
r

ks
sk modmod

1

1,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⋅ ∑

−

=

,  (7) 

where 1, =ks yx . Logically meaning that skm  lies 
at the intersection of column and row for which 
corresponding ix  and jy  equal 1. 

Employing Krestenson’s basis for large number 
calculations allows efficient multiplication 
operations not only program-controlled but also 
hardware-controlled large number calculations. 
Obviously the above described algorithm allows to 
replace multiplication operations characterized by 
square complexity of calculation with summing 
operations which in contrast are of linear complexity 
of calculations. Such an implementation allows 
highly efficient calculations on elliptic curves over 
finite field of higher orders. 

Hardware-based systems or parallel systems are a 
perfect opportunity to utilize algorithms capable of 
dividing any large numbers into segments operated 
directly by a processor, or into segments of size 
suitable for hardware structures for processing them. 
Special algorithms have been devised in order to 
represent any number in a form of a list  

A=(a1, a2, …, an),   (8) 

where each of n cells ai includes a precisely sized 
fragment of a large number. This approach allows 
representation of large natural numbers in binary 
system or as digits sequences housed in cells ai. In 
this way each cell may be simultaneously operated 
by independent processes. of others by parallel 
processes [9]. 

Assume extremely large integers X, Y, Z. Divide 
them into binary words of specified length m in base 
δ, where δ = pm: 

01
1

1 ... xxxxX n
n

n
n ++++= −

− δδδ , (9) 

01
1

1 ... yyyyY r
r

r
r ++++= −

− δδδ , (10) 

01
1

1 ... zzzzZ k
k

k
k ++++= −

− δδδ , (11) 

and all coefficients ).,0[,, δλβα ∈zyx   
In further discussion numbers X, Y, Z are 

considered regardless of sign assuming XY ≤ . In 
the case of addition  

1, +≤≤=+ nkrZYX .  (12) 

In a very simple way the above equation may be 
adapted to multiple number additions, minding an 
accurate estimation of number of cells k which may 
be occupied while summing a set of numbers. 

In the case of subtraction the number of occupied 
cells is presented by  

,ZYX =−  .0 nk ≤≤   (13) 

Having a large number fragmented into excerpts 
in the form of lists it is possible to apply parallel 
summing and subtraction processes carried out by 
algorithms which will be explained at this point. 
Each of the processes initiates a double word, each 
component ai is stored in a low-order word and 
component bi  – in a high-order word assuming that 
for every i > r 0=ib . 

Summing algorithm for each of the processes 
looks as follows:  

1. Summing i-th component ii yx +  

2. Value of ( ) δϑ modiii yx +=  gets written 
in the low-order word of adequate device 

3. Position 1+i  in the high-order word is 
replaced by ( ) δω divyx iii +=+1  

4. Analysis of the high-order word of i-th 
position allows: 

a) algorithm termination in the case of 
lack of transfer 

b) return to point 1 in the case of 
transfer occurrence. 

It turns out clear that the result Z is obtained after 
at most n+1 steps. 

Subtracting algorithm for each of the processes 
looks as follows:  
1. Subtracting i-th component ii yx −  

2. A value iϑ  is calculated according to the 
equation beneath and gets written in the low-
order word of adequate device  

 

⎩
⎨
⎧

≥−
−+

=
iiii

iiii
i yxifyx

yxifyx
,

, pδ
ϑ  

3. Position 1+i in the high-order word is replaced 

by 
⎩
⎨
⎧

≥
=

ii

ii
i yxif

yxif
,0
,1 p

ω  

4. Analysis of the high-order word of i-th position 
allows: 

a) algorithm termination in the case of lack of 
transfer 

b) return to point 1 in the case of transfer 
occurrence. 

Similarly to summing algorithm the result Z is 
obtained after at most n+1 steps. 

Due to the fact that calculating reverse numbers 
in field are realized at vast expense the summation 
process is carried out in a mixed representation. For 
two reasons the mixed representation is favored: it 
does not require calculating reverse numbers in 
field, which is necessary in affine representation and 
allows reduction of multiplication operations from 
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16 in projective representation to 11. Table 2 shows 
calculations that need to be carried out in order to 
add two points: P1 expressed in affine coordinates 
and P2 expressed in projective coordinates. The 
result being obviously expressed in projective 
coordinates. 

 
Table 2. Mixed summation point 
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2
211
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2
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2
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2
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5. FPGA UNIT ARCHITECTURE 

The construction of a hardware unit starts off 
with a creation of Krestenson matrix for numbers of 
definite length and a given module outside the 
system. In FPGA system the matrix is stored in 
ROM (Read-Only Memory) in such a form that is 
adequate to the size of a number or the number of 
integer words. 

The multiplying unit is fed with numbers as 
binary vectors and produces results of the same type. 
As far as the structure of a multiplying unit is 
concerned there are some basic elements to be 
mentioned: 

- Components responsible for picking Krestenson 
matrix from ROM and placing it in a 3-
dimentional table inside the system.  

- Components summing the matrix rows and 
realizing modulo operations in precisely the 
same way as it was described for the summing 
unit. All rows are summed in a parallel manner. 
As soon as the summing has finished the 
modulo operation is carried out in much the 
same way as in the case of the summing unit 
with the help of a parallel subtraction as the 
sum is smaller than a doubled module.  

- Components responsible for summing the 
results of the prior operation, modulo 
operations done analogically to the above, 
outputting the result. 

A multiplying unit structure is shown 
schematically in fig. 1. 

In order to increase the pace of VHDL (Very 
High Speed Integrated Circuits Hardware 
Description Language) code creation, which is the 
native code of the unit, a special function has been 
written in C++ language allowing an automatic unit 
code generation in VHDL device description 
language. 

 

 
Fig. 1 – Multiplying unit 

Having described the multiplying unit it is 
reasonable to move on to the nest unit which is 
responsible for Pollard rho algorithm realization. 
Structure of that unit is schematically shown in fig. 
2. 

 

 
Fig. 2 – Realizing unit Pollard rho algorithm 

As the schematic shows only marked points are 
sent over to the communication unit. Unit from 
figure 2 carries out a single random walk path. As it 
is shown in picture 2 the hardware unit’s job is to 
realize a part of the algorithm, that is summing of 
points one of which is stored in Rj matrix and the 
other calculated by the system in a prior iteration or 
is the starting point of a random walk according to 
the rho Pollard algorithm. 

Memory ROM II of Ri points basis and ai bi 
coordinates is generated accordingly to parameters 
of a curve being processed. ROM II memory is 
stored in VHDL language however generated by an 
exclusively dedicated program in C++ due to its size 
and necessity of adapting the content to calculations 



Marek Aleksander, Mykola Karpinskyy, Grzegorz Litawa / Computing, 2011, Vol. 10, Issue 2, 91-96 
 

 95

on various curves. Analogically are calculated 
coordinates of the starting point and the system 
structure adapted to various curve sizes. The other 
part of rho Pollard algorithm is carried out by PC 
run dedicated programs responsible for reading 
information in the from of distinctive points from 
FPGA system (practically from multiple such 
systems realizing independent random walks). This 
remaining part of the algorithm is also responsible 
for writing the information in a base and cross-
comparing. Generally, a standard integer data type 
available in VHDL have been used in FPGA run 
summation processes. As it is natural for this sort of 
calculations to operate on huge numbers they are 
divided into words of integer type and subsequently 
added parallel as explained above. 

 
6. RESULTS 

Implementation of a unit presented in fig. 2 was 
carried out in Startix III Altery system. Summary of 
the system performance for various curve lengths are 
show in tab. 3. 

Table 3. Results for various curve lengths. 

GF(p) iterations/second 
72  349650 
96 255681 
120 207070 
168 157024 

The efficiency of the constructed unit is 
expressed as number of iterations per second, 
namely number of summations done by one unit 
in one second – shown in tab. 3. As it is known, 
an average number of iterations needed for 
working out discrete logarithm equals [1, 2, 7] 

D
n 2π

   (12)
 

 
where D is number of units Thus it is possible to 
estimate time needed for finding discrete logarithm. 

Let’s compare performance of a single FPGA 
system containing a single processor responsible for 
realizing one random walk utilizing Krestenson’s 
basis with performance of a Pentium4 processor 
which operates on huge numbers using one of the 
commonly available libraries. An FPGA system 
realizing calculations on curve GF(96) yields 
256 000 summations while Pentium4 73 000 
iterations per second. 

 
 
 
 

7. CONCLUSION 
Utilizing Krestenson’s basis in FPGA obtain 

increase rate calculations on the elliptic 
curves GF(p). Following the presented idea, a code 
realizing single random walk may be used, after 
some modification, in an FPGA cluster containing a 
greater number of systems working parallel. This 
would linearly increase the efficiency of rho Pollard 
algorithm realization. 
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