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CONVERGENCE CRITERION FOR BRANCHED CONTC-NUED FRACTIONS OF THE
SPECIAL FORM WITH POSITIVE ELEMENTS

In this paper the problem of convergence of the important type of a multidimensional gener-
alization of continued fractions, the branched continued fractions with independent variables, is
considered. This fractions are an efficient apparatus for the approximation of multivariable func-
tions, which are represented by multiple power series. When variables are fixed these fractions
are called the branched continued fractions of the special form. Their structure is much simpler
then the structure of general branched continued fractions. It has given a possibility to establish
the necessary and sufficient conditions of convergence of branched continued fractions of the spe-
cial form with the positive elements. The received result is the multidimensional analog of Seidel’s
criterion for the continued fractions. The condition of convergence of investigated fractions is the di-
vergence of series, whose elements are continued fractions. Therefore, the sufficient condition of the
convergence of this fraction which has been formulated by the divergence of series composed of par-
tial denominators of this fraction, is established. Using the established criterion and Stieltjes-Vitali
Theorem the parabolic theorems of branched continued fractions of the special form with complex
elements convergence, is investigated. The sufficient conditions gave a possibility to make the con-
dition of convergence of the branched continued fractions of the special form, whose elements lie in
parabolic domains.
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INTRODUCTION

The convergence problem for continued fractions with positive elements is solved by Sei-
del’s criterion.

© 1
Theorem 1 ([9, 12]). A continued fraction by + [) — with positive elements converges if, and
n=1Yn

only if, the series E b, diverges.
n=1
Convergence criteria for the continued fractions which elements lie in angular [8], parabolic
[1, 4, 6] domains was obtained by Seidel’s criterion and Stieltjes-Vitaly Theorem.
Necessary, sufficient, necessary and sufficient conditions for convergence of the branched
continued fractions (BCF) with N-branches are establised [3, 10, 11]. But, the analog of Seidel’s
criterion in following statement is not obtained:
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1
BCF by + D Z —— with positive elements converges if the series Z min b; are diver-
k=1i=1 Di(k) k=1 i(k)
gent.

Establishing the analog of Seidel’s criterion for the BCF resulted into construction of differ-
ent types of BCF, in particular:

O k . .
o+ D Z ® — by + Z ) , M
k=1 iy=1

i(k) i

11 +Zb

where
ai(k),bi(k) S C,l(k) el, 1= {l(k) = iliz...ik 1< ik < Z'k,1 <. <ipy k>1; ip = N}

This fraction is called the BCF of the special form. There are different convergence ctiteria
for this fraction [1, 2, 5].

In the case b;) = 1, and a;) are replaced by a;(;)z;,, this fraction is called a multidimen-
sional regular C-fraction with independent variables. This fraction is analog of the BCF for
multiple power series. The condition of the correspondence between multiple power series
and regular multidimensional C-fraction with independent variables is established in [7].

The analog of Seidel’s criterion for the fraction (1) when a;) = 1, bjgy > 0,i(k) € Z,
and N = 2 can be found in [6, 11]. The aim of the paper is to establish the analog of Seidel’s
criterion for arbitrary natural N. Also, using this criterion, the technique of value and elements
sets [3, 9] and Stieltjes-Vitaly Theorem [3], to obtain the parabolic convergence region for the
following BCF

, -1

o Ik a; k

(bo +DX %) : @
k=1 ix=1

where by, a;(;) are complex numbers, i(k) € Z.

1 MAIN RESULTS

In this paper, it'll be proved following lemmas for obtaining an analog of Seidel’s criterion
for the BCF

oozkl

(3)

=1 =

Lemma 1.1. Let the BCF (3) with positive elements converges and ¢ be an arbitrary real positive
number. Then exists a natural m, depended of ¢, such that for each BCF with positive elements

bo+DZi @
DL

ik
where /l;i(k) = by for alli(k) € Z,k < m, the following estimate holds

/
<

foralln,k > m and f,i be a kth approximant of BCF (4).
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Proof. 1f fi be a kth approximant of BCF (3) and the fraction converges, then for all € > 0 exists

m>2:|fu1 —f/m_2| <.
Since fx = f.,k = 1,2,..,m — 1, using the monotonicity properties of approximants of a
BCF with positive elements, we have that foralle > O foralln,k € N,n > m,k > m,

— fm—a| = |fm-1— fu-2| <e

O

Lemma 1.2. Let Ao, Ay be absolute errors of by and by, i(k) € Z, respectively. If by >

0, Ez’(k) > 0 are approximants of by and b; (), respectively, then the absolute value of relative
error of f,,, mth approximant of the BCF (3), is less or equal to the value

Ajs)y Dist1) }
bi(2s) bi(2s41)

(5)

max max
ogsg[ﬂ%] i(2s+1)eZ

where Aj; = Ao, Ajorq1) = 0, if m = 2k.

Proof. Let o, = %, Op = a- , where @ is approximate value of w. Ifa > 0,2 > 0,0 > 0,

~ 1)

b>0,then: |5g+b| Sma.X{|(5a|,|5b|}, 5;1:»[7’ Sma.X{|§* ’} |5* |5;| = ‘# .
a

m is—1
Let (51((";)) is the relative error of calculation of the BCF by + D
s=k+1,=1 "i(s)

. Then the absolute

value of relative error of f, is less or equal to:
L} = e ko] o} <

1(2) 11,12,13
A AY
<..< max max 0 = max max 1(25), = i(2s+1) .
0<s<[y] i(2s+1)eT 0<s<[4] i2+DET | bi2s) " biap)

Let 2" = {i(n) =iyip...iy :m <iy <i, 1 <..<ip; n>1;ip=N},m = 2,N. Let the
continued fractions are determined recurrently as follows

— = 1
b(()m = Om ! + D (m—1)" "i(n) bz((n;) ) + Db(ml) ,m=1,N, ©6)
=10, k=15

7

L

max { i(3)

i)

di(2s11)
1+ 0i2s41)

i(2s) |~

mlk] = gum..m, i(n) € T0"*D, with the initial conditions b\’ = bo, bi) = by, i(k) € Z,
k

where b; () are partial denominators of BCF (3).

Theorem 2 (The multidimensional analog of Seidel’s criterion). BCF (3) with positive partial
denominators converges if and only if for each m,1 < m < N, and each i(n),i(n) € Z(m+1)
the following series diverge

Z br(n[ ’ Z bz((n; rik]’ @)

that elements are determined by (6).
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Proof. Necessity. Let the fraction (3) is convergent, then the following sth tail of this fraction
converges:
oo g 1
Tis) = bi(s) + D Z '—,Z'(S) el
k=s+1i=1 "i(k)
The proof of this fact is analogous to the proof of the Theorem 2.1 [3]. In particular, if i; = 1,
then the following continued fractions are convergent

S| = 1 )
ry =by + Db—, Ti(n)1 = bi(n)l + D ' ,i(n) € 7. (8)
k=2 1K

According to Seidel’s criterion, the series Z bl[k], Z bityi[g,i(n) € 7 diverge. Let
k=1

,i(n) € Z®. Consider the BCF of the special form with

(1 _ 2 My
by’ = by + 7’1, bi(n) = bl(n) + ot
(N — 1)-branches:

oolkl

+D Z ©)

1lk Zb()

We shall show that the convergence of BCF (9) follows from convergence of th~e fraction (3). Let
fn be the nth approximant of the BCF (3). The approximants of the BCF (9), f,, are the figured
approximants of the fraction (3).

noi bi(k), ifk<nork=mn,i, #1;
fn—b0+DZ ®) =Y by + D , ifk =iy = 1.
— o

= 1Yi(n)1[p]

Applying the method suggested in [3], we can show that the following relation for differ-
ence f, — f, is valid:

g1 ip)
where
(n) no i (n N noodpg 1
Qz(n) = bi(n)r Q,‘ (s) z(s + D 2 b = bz(n Q 1(5) + D =
r=s+1i,=1"i(r) r=s+11=1 "i(r)

=12,..;,s=1n-1,i(n) € Z; i(p) € Z. Obviously bi(n) —Ei(n) =0,ifi, # 1, and
bi(n) — Ei(n) <0,ifi, = 1. Thus, (_1)n+1 <fn — f;) > 0, that is er < fér < ]ér+1 < f27+1.
That is to say, the convergence of the fraction (9) follows from the convergence of the frac-

toin (3). Analogically as for BCF (3), we conclude that series Z b Z b (n) e 70,

e |

k=1ir=3 bi()”
i(k) € 0 converges.
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(m—1)

Using the same arguments by (N — 2) times, we conclude that series }. bm[k} ,
k=1

). bl((rz )_nigk} are divergence for each m : 1 < m < N —1,i(n) € I(mH), also the continued

=1

(N-1) | 1~
+D

0 — . (N-1)’

k=1 bi(k)

the divergence of the series Z bN[k] 2
k=1

Sufficiency. By mathematical induction on N, we prove the fact that from diverdgence of
the series (7) follows the convergence of the BCF (3).

fraction b i(k) € TN is convergent. It’s equivalent by Seidel’s criterion to

. Thus, series (7) diverge.

1
N = 1, the continued fraction with positive elements by + D b_ converges by Seidel’s
171[k]

[ee]
criterion, if the series ) by is divergent.
i=1

(o] Zk 1
N = 2, the BCF with positive elements by + [) ) b ,i(k) € Z,iy = 2, converges by the
k=1 lk—l i(k )
Theorem 2.8 [11] if series Z b1k Z bi(n Z b dlverge

We suppose that for all N N < p, from the d1vergence of series (7) follows the convergence
of the BCF (3). Consider the convergence of the BCF (3) in the case N = p.

2kl P .
bo —I—D Y —i(k) € L,ip=p. (10)
k=1 ix=1 "i(k)
If Z bijg = o, f bitn)1x) = o0,i(n) € 72), then continued fractions
k=1 k=1
b +f) ! 1)
0 1 7
=1 D1l
7@, (12)

converge to the values b(()l) and bz.((r?), respectively. We replace, the continued fractions (11) and
(12) by it’s values, and obtaine BCF of the special form with (p — 1)-branches

00 g1
U D Z @ i(k) € I®,ip = p- (13)
=iz by

Since, the series (7) diverge, for each m, 2 < m < N, the fraction (13) converges by the hy-
potesis of induction. We shall show that the fraction (10) is convergent. Consider the difference
between the nth approximant of BCF (10) and (13).

Let b(()l’n), bl((ln’;) be the nth approximant of continued fractions (11) and (12) respectively.
Then the nth approximant of BCF (10) may be written as

n lkl

ps") +DZ k) e 1@,

=1 ix= Zb
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It's the BCF with (p — 1)-branches. The nth approximant of BCF (13) may be written as

n Zk1

=1 Zk 2 b ( )
According to the Lemma 1, form the convergence of the fraction (13) follows that for all
e > 0 exists m € IN such that for all n,k € IN, n > 2m + 2 takes place An — gn| < &, where
="ty
P 1 i 1 iom 1 i2m+1 1 i”,1 1
VD D D D D D= =D Do
. (1) 1) + ... (1) (Ln=2m=2) 4 . + 1,0)
11:2 bl(l) + 12:2 bl(z) + + 12”1+1 =2 b (2m+1) + 12m+2 2 b (2m+2) + + Zn:2 bl(]’l)

= fn

Next we estimate the value |, — ful © |fn — ful < |fn — &u
2, we estimate the first term in the right of inequality:

. Using the Lemma

(Ln=2s) _ (1) | |p(Ln-25-1) _ (1) ’
|fn — gn| < max max { i(2s) i(2s)| |7i(2s+1) i2s+1) } -9
" i(2s (1) ’ (Ln—2s-1) "
Ossm i(2s+1) bi(Zs) bi(zZH)s

Since the continued fractions (11) converge, we may choose n, n > 2m + 2, such that for all

(Ln—=2s) b(l) €

(1n—2s—1)
i(2s) i25)| <24 b

- 2
i(2s+1) € 7%, i(25+1) 2s+1

)< whereA—bo+Zb
i1=1

Thus, ‘ fn — ]?n‘ < &. From the convergence of the fraction (13) follows the convergence of
the fraction (10). ]

Since the elements of series (7) are difficult to calculate by the relation (6), it’s conviniently
to use the following sufficient condition for convergence.

Theorem 3. BCF (3) is divergent, if for eachm, 1 < m < N, and each, i(n), i(n) € Zm+1) the
following series are divergent

Y b Y bigymii- (14)
k=1 =1

The divergence of the series (14) is suffisient for the divergence of the series (7). We shall
use the Theorem 3, to obtain the parabolic convergence domain for the BCF (2).

Lemma 1.3. Let { ik )} be the sequense of half-planes

- 1
Viy =V, = {z €C:Re <ze_”> > ~5;

i COSIY} k=1,23,...,1<ix <ikq, ig =N,
k—1

Y 1
Eiy = Ei, = {z €C:|z| —Re (ze 2”) < 3 1cos ’y}

where—n< <7T
2 S T3

Then {Vi(k)} and {Ei(k)} are the sequenses of value sets and element sets of the BCF (2).
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The proof of this Lemma is analogous to the proof of the corresponding Theorem 1.5 [3] for
the BCF with N-branches.

Theorem 4. Let the elements of the BCF (2) lie in the parabolic domains a;) € Pj), i (k) € Z,
where

1-
Pi) () = Py (e) = {z €C:|z|] —Rez < 8} (15)
Zlk 1
¢ be an arbitrary small real number, 0 < & < 1.

Then

1) there exist a finite 11m1ts of even and odd approximants of the BCF (2);

2) BCF (2) converges if Z by = o0, Z bi(n = oo for each m, 1 < m < N, and each,

k=1

i(n),i(n) € I(m“), Where biky s definitely determined by the relations

ai(k)‘ = (bi(k)bi(k—l)) (k) €L, bjgy=bo=1;
3) the value region of this fraction is the following circle

K={zeC:|z—-1| <1}.

Proof. Let a;) =
a (k) 75 0.

We determine the function

O, if ai(k) = 0,
i) (z) = Gig | €, if ajg # 0

ai(k)‘ e'™i), where a;(r) be an argument of number a;), —7T < a;) < 7, if

in domain Q; = {z € C: [Imz| <6, |Rez| < 1+ 5}, where J is an arbitrary real number, such
that (14 6)%e™ < (1—¢) .

We shall show that a;()(z) € Piq) (0), i(k) € Z, if z € Q.

If Ki(k) = 0, then ai(k)( ) i( ( ) Let Xi(k) #0andz = x + ly From ai(k) € Pi(k) (8), we

obtain
1—¢ ,51—cosapx

2ir_1 1 —cosag)

(16)

z)) — Rea;q (z) <

. ) 1 —cosajx
If we determine the extrema for the function M (a,-(k),x) = ——  —, where
1 — cos ajy

—7T < @iy < 7wy # 0, |x[ <1+ 6, we obtain sup (/\/l (zxi(k),x» = (1+6)%
1
Thus, Ak (Z)‘ — Reai(k) (Z) < —, thatis ai(k) (Z) € Pi(k) (0) , l(k) el
20 4
Consider the functional BCF

k-1 g. =
(1 +D Z %@)) ,i(k) e T. (17)

According to the Lemma 3, where v = 0, we obtain that the value set of the reciprocal of the

fraction (17) is the half-plane Rez > % Therefore, all approximants of the BCF (17) depend on
thedomain K ={z € C:|z—-1| <1}.
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Thus, any nth approximant of the (17), f,(z), is the holomorphic function in domain ;.
We use the Theorem 2.13 (Stieltjes-Vitali Therem [3]) for sequence { f,,(z) }, where in particular
a=-1,b=-2and A= {z€C : Rez=0, |Imz| < }.

If z € A, then we write the BCF (17) in the form

k1 7 -1
<1+DZ ) ,i(k) € T, (18)

1 1%

where
_ 0, ifa (k) 0
Bi(k) = aj(k) ’ e Y%k if aj() # 0.

By equivalence transformstion, we can write the fraction (18), into the form

i1 -1
<1 +) ; ﬁ) ,i(k) € T, (19)

i ‘ (b-(kl)bi(k))l, by, =1, i(k) € T.

The divergence of the series Z by k], Z bi(nymjx) for each m, 1 < m < N, and each i (n),

where b; () is determined by relations

e Z(m+1) is equivalent to the divergence of the series 2 b, ey, Z bi(n eitmmlky
q 24 mk] mk]

The convergence of the BCF (19) follows from the Theorem 2 Thus, the fract10n (18) converges.
Therefore, according to Stieltjes-Vitali Therem, the BCF (17) converges on every compact
subset of ();. In particular, it converges when z = 1. This is equivalent to the convergence of
the BCF (2).
Using the monotonicity properties of approximants of a BCF with positive elements, we
find that finite limits of even and odd approximants of the BCF (2) always exist. m

Analogous, we can prove the following Theorem.

Theorem 5. Let the elements of the BCF (2) lie in the parabolic domains a;) € Py, i(k) e Z,
where

; 1—¢
— P _ ol -2 l—e -
Pitky (v) = Py (7) = {z €C:|z| —Re (ze ’7) < 27, C0 ?} , (20)
¢ is an arbitrary small real number, 0 < & < 1.

Then
1) there exist a finite limits of even and odd approximants of BCF (2);

2) BCF (2) converges if OZO‘, by = o0, OZO‘, bi(nymjr) = o for eachm, 1 < m < N, and each
k=1 k=1
e I, where bixy 1is definitely determined by the relations

-1
a; k)’ = (bi(k)bi(k—l)) , l(k) €7, bi(O) =by=1
3) the value region of this fraction is the following circle

=)
<— 4.
cosy

e~

IC(v):{zEC: z—

cosy
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AOcAiAXKyeTbCST IMTaHHS 301KHOCTI Ba>KAMBOTO KAACy baraTOBMMipHNMX y3ararbHeHb HeTlepepB-
HUX APODIB — TIiAASICTHX AQHIOrOBUX Ap06iB ('AA) 3 HepiBHO3HauHVMY 3MiHHVMU. LIi Apobu € edpe-
KTUBHVMM TIPY HaOAVDKEHHI PYHKIIIA, 3aAaHMX KPaTHMMM CTelleHeBuMy psiaamt. [Tpm dpikcoBarmx
3HAUEeHHSX 3MiHHIX BOHM OTPMMAAM Ha3BY TiAASCTMX AQHIOTOBMX APOGIB CIIEIiaABHOTO BUTASIAY.
3HauHO MPOCTillIa CTPYKTYpa MOPiBHSIHO i3 3araAbHMMM TiAASCTYMY AQHIOTOBYMI APOOaMIM AaAa
MO>AMBiCTb BCTAHOBUTY HEOOXiAHY i AOCTATHIO YMOBY iX 361KHOCTI y BUTTAAKY AOAATHMX EAEMEHTIB.
OTpuMaHMIT pe3yAbTaT € HaraTOBUMIpHIM y3araAbHEHHSIM KPUTEPio 361KHOCTI 3eliaeAst AAsI Helle-
pepBHUX ApObiB. YMOBOIO 36iKHOCTI AocAiaAXyBaHMX [AA € po36IXHICTb PSIAIB eAeMEHTAMU SIKMX
€ HemepepBHi Apobu. ToMy AOBOAMTECST AOCTATHsI edpeKTMBHA O3HAaKa 361KHOCTI, 1110 pOpMyAtOe-
ThCSI Yepe3 PO36IKHICTD psIAIB CKAAASHNX 3 YaCTMHHMX 3HaMeHHMKIB AaHOro I'AA. Bukopucrosyroun
BCTaHOBAEHY AOCTATHIO O3HaKy 361XHOCTI Ta TeopeMy CriaTbeca-BiTari, AocaiakeHo mapaboaiuni
obaacti 36iHOCTI AT TAA crieniaAbHOTO BUTASIAY 3 KOMIIAEKCHMMM eAeMeHTaMM. BcTaHOBAeHa
AOCTaTHsI O3HaKa AaAa MOXAMBICTD IocAabuTy ymoBu 36ikHOCTI TAA, eneMeHTH KOTpUX AeXaTh B
napaboAiuHMX 06AACTSIX.

Kntouosi cioea i ppasu: TiAASICTi AQHITIOTOBI ApOOM CIIEIIiaABHOTO BUTASIAY, 301KHICTb.



