On Convergence and Truncation Error Bounds of 1-periodic Branched Continued Fraction of the Special Form

D.I. Bodnar, M.M. Bubniak

Abstract

Branched continued fractions with non-equivalent variables are natural generalization of C-fractions in solving of the problems of correspondence to multiple power series. We obtain branched continued fractions of the special form if values of variables are fixed. For 1-periodic branched continued fraction of the special form we established the conditions of convergence and uniform convergence, and the truncation error bounds.

1 Introduction

The object of our investigation is 1-periodic branched continued fraction (BCF) of the special form. The research review concerning 1-periodic continued fraction is given in the monographs [11, 14, 15, 16]. The parabola theorems play the important role in the analytic theory of continued fractions and particularly 1-periodic continued fraction. The analogs of parabola theorems were established for the branched continued fraction of the general form with N branches

$$
\begin{equation*}
1+{\underset{k=1}{\infty} \sum_{i_{k}=1}^{N} \frac{a_{i(k)}}{1}=1+\sum_{i_{1}=1}^{N} \frac{a_{i(1)}}{1+\sum_{i_{2}=1}^{N} \frac{a_{i(2)}}{1+\ddots}},}_{,} \tag{1}
\end{equation*}
$$

where $a_{i(k)} \in \mathbb{C}, i(k)=i_{1} i_{2} \ldots i_{k}$ - multi index $\left(1 \leq i_{k} \leq N, k \geq 1\right)$, by D.I. Bodnar [5], T.M. Antonova [1] and for two-dimensional continued fractions by Kh. Yo. Kuchmins'ka [12]. For the branched contionued fraction of the special form

$$
\begin{equation*}
b_{0}+\sum_{k=1}^{\infty} \sum_{i_{k}=1}^{i_{k-1}} \frac{a_{i(k)}}{b_{i(k)}}=b_{0}+\sum_{i_{1}=1}^{i_{0}} \frac{a_{i(1)}}{b_{i(1)}+\sum_{i_{2}=1}^{i_{1}} \frac{a_{i(2)}}{b_{i(2)}+\ddots}}, \tag{2}
\end{equation*}
$$

where $a_{i(k)} \in \mathbb{C}, i(k)$ - multi index, $1 \leq i_{k} \leq i_{k-1}, i_{0}=N$ - integer, T.M. Antonova [2] proved the convergence of the fraction (2) if $b_{i(k)}=1$ and elements $a_{i(k)}$ satisfy the following conditions: $\sum_{i_{k}=1}^{i_{k-1}}\left(\left|a_{i(k)}\right|-\Re a_{i(k)}\right) \leq$ $2 t(1-t),\left|a_{i(k)}\right| \leq \rho(1-t)^{2}, t<1 / 2, \rho<1$ and established other convergence criteria for fractions (1) and (2).
O.Ye. Baran [4] obtained the analog of the parabola theorem for fraction (2) if partial numerators $a_{i(k)}$ belong to respective parabolic regions and partial denominators $b_{i(k)}$ - the half-planes.

Investigating the parabola convergence regions, R.I. Dmytryshyn [10] specified lemma 4.41 [11, p. 100]

$$
\begin{equation*}
\Re \frac{u+i v}{x+i y} \geq-\frac{\sqrt{u^{2}+v^{2}}-u}{2 x} \geq-\frac{p}{c} \tag{3}
\end{equation*}
$$

where $x \geq c>0, \sqrt{u^{2}+v^{2}}-u \leq 2 p, 0<p \leq 1$, and proved the convergence of multidimensional generalization g-fraction

$$
\begin{equation*}
\frac{s_{0}}{1}+\sum_{i_{1}=1}^{N} \frac{g_{i(1)} z_{1}}{1}+\sum_{i_{2}=1}^{N} \frac{\left(1-g_{i(1)}\right) g_{i(2)} z_{2}}{1}+\sum_{i_{3}=1}^{N} \frac{\left(1-g_{i(2)}\right) g_{i(3)} z_{3}}{1}+\cdots \tag{4}
\end{equation*}
$$

where $s_{0}>0,0<g_{i(k)}<1, k=\overline{1, \infty}, i_{p}=\overline{1, N}, p=\overline{1, k}, z \in \mathbb{C}^{N}$ if the following condition is valid
$z \in \bigcup_{\alpha \in(-\pi / 2 ; \pi / 2)}\left\{z=\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{C}^{N}: \sum_{k=1}^{N}\left(\left|z_{k}\right|-\Re\left(z_{k} e^{-2 i \alpha}\right)\right)<2 \cos ^{2} \alpha\right\}$.
He also established the truncation error bounds of fraction (4) at some additional conditions.

2 Main results

We obtain 1-periodic branched continued fractions of the special form fraction if $a_{i(k)}=c_{i_{k}}, b_{i(k)}=1\left(1 \leq i_{k} \leq i_{k-1}, k \geq 1\right)$ in fraction (2), that is BCF next form

$$
\begin{equation*}
\left(1+\sum_{k=1}^{\infty} \sum_{i_{k}=1}^{i_{k-1}} \frac{c_{i_{k}}}{1}\right)^{-1}=\left(1+\sum_{i_{1}=1}^{N} \frac{c_{i_{1}}}{1+\sum_{i_{2}=1}^{i_{1}} \frac{c_{i_{2}}}{1+\ddots .}}\right)^{-1}, \tag{5}
\end{equation*}
$$

where c_{j} - complex numbers $(j=\overline{1, N}), i_{0}=N$ - integer. The n-th approximant of 1-periodic BCF (5) is

$$
F_{n}=\left(1+{\underset{D}{k=1}}_{n}^{i_{i_{k}=1}^{i_{k-1}}} \frac{c_{i_{k}}}{1}\right)^{-1} \quad\left(n \geq 1 ; F_{0}=1\right)
$$

We define

$$
R_{n}^{(q)}=1+{\underset{\mathrm{D}}{k=1}}_{n}^{\sum_{j_{k}=1}^{j_{k-1}} \frac{c_{j_{k}}}{1}=1+\sum_{j_{1}=1}^{j_{0}} \frac{c_{j_{1}}}{1+\sum_{j_{2}=1}^{j_{1}} \frac{c_{j_{2}}}{1+\ddots \sum_{j_{n-1}=1}^{j_{n-2}} \frac{c_{j_{n-1}}}{1+\sum_{j_{n}=1}^{j_{n-1}} \frac{c_{j_{n}}}{1}}}} . .}
$$

as n-th tail q-th order of 1-periodic $\operatorname{BCF}(5)\left(q=\overline{1, N} ; n \geq 1 ; j_{0}=q\right.$; $\left.R_{0}^{(q)}=1 ; R_{n}^{(0)}=1\right)$. Obviously, that the tails $R_{n}^{(q)}(n \geq 1, q=\overline{2, N})$ satisfy following recurrence expression

$$
\begin{equation*}
R_{n}^{(q)}=R_{n}^{(1)}+\sum_{s=2}^{q} \frac{c_{s}}{R_{n-1}^{(s)}} . \tag{6}
\end{equation*}
$$

Theorem 1. Let elements $c_{j}(j=\overline{1, N})$ of (5) satisfy the condition

$$
\left(c_{1}, c_{2}, \ldots, c_{N}\right) \in G=G_{1} \times G_{2}
$$

where

$$
\begin{gathered}
G_{1}=\{z \in \mathbb{C}:|\arg z| \leq \pi-\varepsilon\} \\
G_{2}=\left\{\left(z_{2}, \ldots, z_{N}\right) \in \mathbb{C}^{N-1}: \bigcup_{\gamma \in I_{\varepsilon}}\left\{\sum_{s=2}^{N}\left(\left|z_{s}\right|-\Re\left(z_{s} e^{-2 i \gamma}\right)\right) \leq l \sin ^{2} \varepsilon / 2\right\}\right\}
\end{gathered}
$$

$I_{\varepsilon}=\left[-\frac{\pi-\varepsilon}{2}, \frac{\pi-\varepsilon}{2}\right], l$ and $\varepsilon-$ some parameters such as $0<\varepsilon<\pi / 2,0<l \leq \frac{1}{8}$.
Then

1) 1-periodic $B C F$ (5) converges uniformly on any compact of the set G;
2) the value set is

$$
\begin{equation*}
\bigcup_{\gamma \in I_{\varepsilon}}\left\{z \in \mathbb{C}:\left|z-\frac{2 e^{-i \gamma}}{\cos \gamma}\right| \leq \frac{2}{\cos \gamma}\right\} \tag{7}
\end{equation*}
$$

3) if beside above $c_{1} \in G_{1} \bigcap\{z \in \mathbb{C}:|z| \leq R\}$ and

$$
\left(c_{2}, c_{3}, \ldots, c_{N}\right) \in G_{2} \bigcap\left\{\left(z_{2}, \ldots, z_{N}\right) \in \mathbb{C}^{N-1}: \sum_{j=2}^{N}\left|z_{j}\right| \leq C\right\}
$$

where R, C - some positive constants $\left(R>\frac{1}{4} \cos \varepsilon, C \leq \frac{(1+\sqrt{1-8 l})^{2}}{16} \sin ^{2}(\varepsilon / 2)\right)$,
a) and also $l<1 / 8, C<\frac{(1+\sqrt{1-8 l})^{2}}{16} \sin ^{2}(\varepsilon / 2)$, then holds the truncation error bounds of (5)

$$
\left|F-F_{m}\right|<L_{1} \cdot \begin{cases}\frac{\rho_{1}^{m+2}-\rho_{2}^{m+2}}{\rho_{1}-\rho_{2}}, & \text { if } \rho_{1} \neq \rho_{2} \\ (m+1) \rho^{m+1}, & \text { if } \rho_{1}=\rho_{2}=\rho\end{cases}
$$

where F - the value of fraction (5), $L_{1}=\frac{16 \sqrt{\Delta}}{\sin ^{2}(\varepsilon / 2)\left(1-\rho_{1}\right)}, d=$ $\frac{1-\sqrt{1-8 l}}{1+\sqrt{1-8 l}}, \Delta=\frac{1}{4}+R, \delta=\frac{1}{4} \sin \varepsilon$,

$$
\rho_{1}= \begin{cases}\sqrt{\frac{1-4 \sqrt{\delta} \sin \theta / 2+4 \delta}{1+4 \sqrt{\delta} \sin \theta / 2+4 \delta}}, & \text { if } \sin \varepsilon \leq \frac{1}{1+4 R} \\ \sqrt{\frac{1-4 \sqrt{\Delta} \sin \theta / 2+4 \Delta}{1+4 \sqrt{\Delta} \sin \theta / 2+4 \Delta}}, & \text { if } \sin \varepsilon>\frac{1}{1+4 R}\end{cases}
$$

$$
\theta=\arcsin \frac{R \sin \varepsilon}{\sqrt{\frac{1}{16}+R^{2}-\frac{1}{2} R \cos \varepsilon}}, \rho_{2}=\frac{16 C}{(1+\sqrt{1-8 l})^{2} \sin ^{2}(\varepsilon / 2)}
$$

b) or $l=1 / 8$, then we obtain the following truncation error bounds

$$
\begin{aligned}
& \left|F-F_{m}\right|< \begin{cases}L_{1} \varrho^{m+1} \frac{(m+1)(m+2)+1}{2(m+1)} & \text { if } C<\frac{\sin ^{2}(\varepsilon / 2)}{16} \\
L_{2} \frac{1}{m+1} & \text { if } C=\frac{\sin ^{2}(\varepsilon / 2)}{16}\end{cases} \\
& \text { where } \varrho=\max \left\{\rho_{1} ; \frac{\sin ^{2}(\varepsilon / 2)}{16}\right\}, L_{2}=\frac{64 \sqrt{\Delta}\left(1+\rho_{1}+\rho_{1}^{2}\right)}{\sin ^{2}(\varepsilon / 2)\left(1-\rho_{1}\right)^{3}}
\end{aligned}
$$

Proof. 1. We use multidimensional analog of Stieltjes-Vitali Theorem [5, theorem 2.17, p. 66] for proving uniform convergence of 1-periodic BCF. We are going to investigate the functional fraction following form

$$
\begin{equation*}
\left(1+\sum_{k=1}^{\infty} \sum_{i_{k}=1}^{i_{k-1}} \frac{z_{i_{k}}}{1}\right)^{-1} \tag{8}
\end{equation*}
$$

and it's respective the sequence n-th approximants $\left\{F_{n}(z)\right\}_{n=1}^{\infty}$, where $z=$ $\left(z_{1}, z_{2}, \ldots, z_{N}\right)$. We prove that this sequence is bounded uniformly if $z \in G$. In this order we estimate modules of tail $R_{n}^{(j)}(z)$ of the functional fraction $(n \geq 0, j=\overline{1, N})$. Considering that $z_{1} \in G_{1}, \gamma \in I_{\varepsilon}$ and according to the parabola theorem 3.43 [14, p. 151] we obtain

$$
\Re\left(R_{n}^{(1)}(z) e^{-i \gamma}\right) \geq \frac{1}{2} \cos \gamma \geq \frac{1}{2} \sin (\varepsilon / 2)
$$

We consider 1-periodic continued fraction

$$
\begin{equation*}
1+{\underset{k=1}{\infty} \frac{-2 l}{1}}_{1} \tag{9}
\end{equation*}
$$

and denote $f_{n}-n$-th approximant $\left(n \geq 1, f_{0}=1\right)$ of it. We prove by the mathematical induction by $n(n \geq 1)$ for every $j(2 \leq j \leq N)$, that

$$
\begin{equation*}
\Re\left(R_{n}^{(j)}(z) e^{-i \gamma}\right) \geq \frac{1}{2} \sin (\varepsilon / 2) \cdot f_{n} \tag{10}
\end{equation*}
$$

For $n=1$, using (3), leads to

$$
\begin{aligned}
\Re\left(R_{1}^{(j)}(z) e^{-i \gamma}\right) & =\Re\left(R_{1}^{(1)}(z) e^{-i \gamma}\right)+\sum_{s=2}^{j} \Re\left(z_{s} e^{-i \gamma}\right) \\
& \geq \frac{1}{2} \sin (\varepsilon / 2)+\sum_{s=2}^{j} \Re\left(\frac{z_{s} e^{-2 i \gamma}}{e^{-i \gamma}}\right) \\
& \geq \frac{1}{2} \sin (\varepsilon / 2)-\sum_{s=2}^{j} \frac{\left(\left|z_{s}\right|-\Re\left(z_{s} e^{-2 i \gamma}\right)\right)}{2 \Re e^{-i \gamma}} \\
& =\frac{1}{2} \sin (\varepsilon / 2)(1-2 l)=\frac{1}{2} \sin (\varepsilon / 2) \cdot f_{1} .
\end{aligned}
$$

By induction hypothesis for k holds: $\Re\left(R_{k}^{(j)}(z) e^{-i \gamma}\right) \geq \frac{1}{2} \sin (\varepsilon / 2) \cdot f_{k}$ $(2 \leq j \leq N)$. We define

$$
\begin{equation*}
q_{k}=\frac{1}{2} \sin (\varepsilon / 2) \cdot f_{k} . \tag{11}
\end{equation*}
$$

Implementing recurrence expressions (6) and induction, we obtain

$$
\begin{aligned}
& \Re\left(R_{k+1}^{(j)}(z) e^{-i \gamma}\right)=\Re\left(R_{k+1}^{(1)}(z) e^{-i \gamma}\right)+\sum_{s=2}^{j} \Re\left(\frac{z_{s} e^{-i \gamma}}{R_{k}^{(s)}(z)}\right) \geq \\
& \begin{aligned}
& \frac{1}{2} \sin \frac{\varepsilon}{2}-\sum_{s=2}^{j} \frac{\left(\left|z_{s}\right|-\Re\left(z_{s} e^{-2 i \gamma}\right)\right)}{2 \Re\left(R_{k}^{(s)}(z) e^{-i \gamma}\right)} \geq \frac{1}{2} \sin \frac{\varepsilon}{2}-\frac{\sum_{s=2}^{j}\left(\left|z_{s}\right|-\Re\left(z_{s} e^{-2 i \gamma}\right)\right)}{2 q_{k}} \\
&=\frac{1}{2} \sin \frac{\varepsilon}{2}\left(1+\frac{-l \cdot \sin (\varepsilon / 2)}{q_{k}}\right)=\frac{1}{2} \sin \frac{\varepsilon}{2} \cdot f_{k+1}=q_{k+1} .
\end{aligned}
\end{aligned}
$$

Since $2 l \leq 2 \cdot \frac{1}{8}=\frac{1}{4}$, then $\frac{1}{2}<f_{n} \leq 1$ by Worpitzky's Theorem. That is why the following inequalities are valid: $\left|R_{n}^{(j)}(z)\right| \geq \Re\left(R_{n}^{(j)}(z) e^{-i \gamma}\right)>$ $\frac{1}{4} \sin (\varepsilon / 2)$ for any $\gamma \in I_{\varepsilon}$. Since $F_{n}(z)=\left(R_{n}^{(N)}(z)\right)^{-1}$ we obtain: $F_{n}(z) \in$ $\left\{z \in \mathbb{C}:|z|<\frac{4}{\sin \varepsilon / 2}\right\}$, that guarantee the sequence of $\left\{F_{n}(z)\right\}_{n=1}^{\infty}$ is bounded uniformly.

We prove the convergence of that sequence on the compact $\mathcal{D}=D_{1} \times$ $\ldots \times D_{N}$ of set G, where $D_{1}=\left\{z \in \mathbb{C}:|z| \leq \frac{1}{4 N},|\arg z| \leq \pi-\varepsilon\right\}$ and

$$
D_{j}=\left\{z_{j} \in \mathbb{C}:\left|z_{j}\right| \leq \frac{l \sin ^{2} \varepsilon / 2}{4 N}\right\}
$$

$(j=\overline{2, N})$. Since $z_{j} \in D_{j}(j=\overline{1, N})$, then $\sum_{s=2}^{N}\left(\left|z_{s}\right|-\Re\left(z_{s} e^{-2 i \gamma}\right)\right) \leq$ $\sum_{s=2}^{N} 2 \cdot \frac{l \sin ^{2} \varepsilon / 2}{4 N}<l \sin ^{2}(\varepsilon / 2)$, that is $\mathcal{D} \subset G$. The convergence of approximants $F_{n}(z)$ on the compact \mathcal{D} leads from the multidimensional analog Worpitzky's Theorem [3, p. 35], implementing $\left|z_{s}\right| \leq \frac{1}{4 N}(s=\overline{1, N})$. The uniform convergence of fraction (5) on any compact of set G follows from the multidimensional analog of Stiltijes-Vitali Theorem.
2. We prove, that the value region of (5) is the set (7). We consider 1-periodic continued fraction $1+{\underset{k}{2}}_{\infty}^{\infty} \frac{-2 l \sin ^{2}(\varepsilon / 2) / \cos ^{2} \gamma}{1}$ and denote h_{n} it's n-th approximant ($n \geq 0, h_{0}=1$).

We can prove by the mathematical induction by n for any $j(2 \leq j \leq N)$ and any $\gamma \in I_{\varepsilon}$ that following inequalities are valid

$$
\Re\left(R_{n}^{(j)} e^{-i \gamma}\right) \geq \frac{1}{2} \cos \gamma \cdot h_{n}
$$

analogically, as inequalities (11).
The elements of n-th approximat $h_{n}(n \geq 1)$ satisfy the condition: $\frac{2 l \sin ^{2}(\varepsilon / 2)}{\cos ^{2} \gamma} \leq$ $\frac{2 l \cos ^{2}(\pi-\varepsilon) / 2}{\cos ^{2} \gamma} \leq 2 \cdot l \leq \frac{1}{4}$, that is $\inf _{n \in \mathbb{N}} h_{n}=\frac{1}{2}$ and $\Re\left(R_{n}^{(j)} e^{-i \gamma}\right) \geq \frac{1}{4} \cos \gamma(\gamma \in$ I_{ε}). Considering that $F_{n}=\left(R_{n}^{(N)}\right)^{-1}$ and $\left|R_{n}^{(N)}\right| \geq \Re\left(R_{n}^{(N)} e^{-i \gamma}\right) \geq \frac{1}{4} \cos \gamma$, we obtain $F_{n} \in\left\{z \in \mathbb{C}:\left|z-\frac{2 e^{-i \gamma}}{\cos \gamma}\right| \leq \frac{2}{\cos \gamma}\right\}$. Since $\gamma \in I_{\varepsilon}$, then the value of n-th approximant $F_{n}(n \geq 1)$ belongs to (7).
3. Using the inequality

$$
\begin{align*}
& \left|F_{n}-F_{m}\right| \leq \frac{1}{g_{n} \cdot g_{m}} \\
& \quad\left[\sum_{k=0}^{m} \frac{C^{k}}{\prod_{r=1}^{k}\left(g_{n-r} \cdot g_{m-r}\right)}\left|R_{n-k}^{(1)}-R_{m-k}^{(1)}\right|+\frac{C^{m+1}}{\prod_{r=1}^{m+1}\left(g_{n-r} \cdot g_{m-r}\right)}\right] \tag{12}
\end{align*}
$$

where $n>m>0, \sum_{s=2}^{N}\left|c_{s}\right| \leq C$ and $\left|R_{n}^{(j)}\right| \geq g_{n}(n \geq 0 ; j=\overline{2, N})$, was proved in [9], we estimate the truncation error bounds of fraction (5).

We use uniform the truncation error bounds for estimating tails $R_{n}^{(1)}$ of (5) $\left|R_{n}^{(1)}-R_{m}^{(1)}\right| \leq M_{1} \rho_{1}^{m+1}(n>m \geq 0)$ where $M_{1}=\frac{4 \sqrt{\Delta}}{1-\rho_{1}}$ and

$$
\rho_{1}= \begin{cases}\sqrt{\frac{1-4 \sqrt{\delta} \sin \theta / 2+4 \delta}{1+4 \sqrt{\delta} \sin \theta / 2+4 \delta},} & \text { if } \delta \cdot \Delta \leq \frac{1}{16} \\ \sqrt{\frac{1-4 \sqrt{\Delta} \sin \theta / 2+4 \Delta}{1+4 \sqrt{\Delta} \sin \theta / 2+4 \Delta},} & \text { if } \delta \cdot \Delta>\frac{1}{16}\end{cases}
$$

on the set $E=\left\{z \in \mathbb{C}:\left|\arg \left(z+\frac{1}{4}\right)\right| \leq \pi-\theta, \delta \leq\left|z+\frac{1}{4}\right| \leq \Delta\right\}$ that was proved in [9].

The values of parameters δ, θ, Δ, what were given in this theorem, were found by elementary calculation provided by condition: $S \subset E$, where $S=$ $\{z \in \mathbb{C}:|z| \leq R,|\arg z| \leq \pi-\varepsilon\}$. Since $\delta \cdot \Delta=\frac{\sin \varepsilon}{16}(1+4 R)$, then conditions $\delta \cdot \Delta \leq \frac{1}{16}$ and $\sin \varepsilon \leq \frac{1}{1+4 R}$ are equivalent and the value ρ_{1} is defined as in this theorem (Figure 1).

Figure 1: $S \subset E$

3 a. Let $l<\frac{1}{8}$. Using the same scheme as in problem 13 [14, p. 49], we proved, that the value $f_{n}-n$-th approximat of 1 -periodic continued fraction (9) is equal $f_{n}=\frac{x^{n+2}-y^{n+2}}{x^{n+1}-y^{n+1}}(n \geq 0)$, where $x=\frac{1+\sqrt{1-8 l}}{2}, y=\frac{1-\sqrt{1-8 l}}{2}$ - the attracting and the repelling fixed points of linear fractional transformation $s(\omega)=1-2 l / \omega$. Using inequalities (10) and denotations (11) for $1 \leq k \leq m$ we obtain

$$
\begin{aligned}
& \frac{C^{k}}{\prod_{r=1}^{k}\left(q_{n-r} \cdot q_{m-r}\right)}=\frac{\left(4 C / \sin ^{2}(\varepsilon / 2)\right)^{k}}{\prod_{r=1}^{k}\left(f_{n-r} \cdot f_{m-r}\right)}=\frac{\left(4 C / \sin ^{2}(\varepsilon / 2)\right)^{k}}{\frac{x^{n+1}-y^{n+1}}{x^{n-k+1}-y^{n-k+1}} \cdot \frac{x^{m+1}-y^{m+1}}{x^{m-k+1}-y^{m-k+1}}} \\
& =\left(\frac{4 C}{x^{2} \sin ^{2}(\varepsilon / 2)}\right)^{k} \frac{1-(y / x)^{n-k+1}}{1-(y / x)^{n+1}} \frac{1-(y / x)^{m-k+1}}{1-(y / x)^{m+1}} .
\end{aligned}
$$

We denote $f_{-1}=1$ and for $k=m+1$ the following estimations hold

$$
\begin{aligned}
& \frac{C^{m+1}}{\prod_{r=1}^{m+1}\left(q_{n-r} \cdot q_{m-r}\right)}=\frac{\left(4 C / \sin ^{2}(\varepsilon / 2)\right)^{m+1}}{\prod_{r=1}^{m+1}\left(f_{n-r} \cdot f_{m-r}\right)}=\frac{\sin (\varepsilon / 2)}{2}\left(\frac{4 C}{x^{2} \sin ^{2}(\varepsilon / 2)}\right)^{m+1} \\
& \frac{1-(y / x)^{n-m}}{1-(y / x)^{n+1}} \cdot \frac{1-(y / x)}{1-(y / x)^{m+1}}<\left(\frac{4 C}{x^{2} \sin ^{2}(\varepsilon / 2)}\right)^{m+1} \frac{1-(y / x)^{n-m}}{1-(y / x)^{n+1}} \frac{1-y / x}{1-(y / x)^{m+1}} .
\end{aligned}
$$

Let $C<\frac{(1-8 l) \sin ^{2}(\varepsilon / 2)}{16}$. We denote $d=y / x$ and, implementing $\frac{1-d^{m-k+1}}{1-d^{m+1}} \leq$
$\frac{1-d^{m}}{1-d^{m+1}}(1 \leq k \leq m)$, we obtain

$$
\frac{C^{k}}{\prod_{r=1}^{k}\left(q_{n-k} \cdot q_{m-k}\right)} \leq \rho_{2}^{k} \frac{1-d^{m}}{1-d^{m+1}}
$$

where $\rho_{2}=\frac{16 C}{(1+\sqrt{1-8 l})^{2} \sin ^{2}(\varepsilon / 2)}$. Using the inequality (12), where $g_{n}=$ $q_{n}(n \geq 1)$ and $\frac{1-d^{m}}{1-d^{m+1}}<1$, let $n \rightarrow \infty$ and we obtain the truncation error bounds (5)

$$
\begin{aligned}
\left|F-F_{m}\right| & \leq \frac{16}{\sin ^{2}(\varepsilon / 2)}\left(M_{1} \rho_{1}^{m+1}+\frac{1-d^{m}}{1-d^{m+1}} \sum_{k=1}^{m} M_{1} \rho_{1}^{m-k+1} \cdot \rho_{2}^{k}+\frac{1-d}{1-d^{m+1}} \rho_{2}^{m+1}\right) \\
& <L_{1} \cdot \begin{cases}\frac{\rho_{1}^{m+2}-\rho_{2}^{m+2}}{\rho_{1}-\rho_{2}}, & \text { if } \rho_{1} \neq \rho_{2}, \\
(m+1) \rho^{m+1}, & \text { if } \rho_{1}=\rho_{2}=\rho,\end{cases}
\end{aligned}
$$

where $L_{1}=\frac{16 M_{1}}{\sin ^{2}(\varepsilon / 2)}=\frac{64 \sqrt{\Delta}}{\sin ^{2}(\varepsilon / 2)\left(1-\rho_{1}\right)}$.
3 b . Let $l=\frac{1}{8}$. We denote $\widehat{f}_{n}-n$-th approximant of 1 -periodic continued fraction, which elements are equal $-1 / 4$. Implementation the formula (3.13) [5], we obtain $\widehat{f}_{n}=\frac{n+2}{2(n+1)}$ and $\prod_{r=1}^{k} f_{n-r}=\frac{n+1}{2^{k}(n-k+1)}$. We estimate for $1 \leq k \leq m$

$$
\begin{aligned}
& \frac{C^{k}}{\prod_{r=1}^{k}\left(q_{n-r} \cdot q_{m-r}\right)}=\left(\frac{4 C}{\sin ^{2}(\varepsilon / 2)}\right)^{k} \frac{1}{\prod_{r=1}^{k}\left(\widehat{f}_{n-r} \cdot \widehat{f}_{m-r}\right)} \\
& =\left(\frac{16 C}{\sin ^{2}(\varepsilon / 2)}\right)^{k} \frac{(n-k+1)(m-k+1)}{(n+1)(m+1)}
\end{aligned}
$$

and for $k=m+1$

$$
\begin{aligned}
& \frac{C^{m+1}}{\prod_{r=1}^{m+1}\left(q_{n-k} \cdot q_{m-k}\right)}=\frac{\sin (\varepsilon / 2)}{4}\left(\frac{16 C}{\sin ^{2}(\varepsilon / 2)}\right)^{m+1} \\
& \frac{n-m}{(n+1)(m+1)}<\left(\frac{16 C}{\sin ^{2}(\varepsilon / 2)}\right)^{m+1} \frac{n-m}{(n+1)(m+1)}
\end{aligned}
$$

Let $C<\frac{\sin ^{2}(\varepsilon / 2)}{16}$, then let $n \rightarrow \infty$ and, implementing $\sum_{k=0}^{m}(m-k+1)=$ $(m+1)(2+m) / 2$, we obtain

$$
\begin{aligned}
\left|F-F_{m}\right| \leq \frac{16 M_{1}}{\sin ^{2}(\varepsilon / 2)} \cdot \frac{\sum_{k=0}^{m} \rho_{1}^{m-k+1} \rho_{2}^{k}(m-k+1)+\rho_{2}^{m+1}}{(m+1)} \\
\quad<L_{1} \varrho^{m+1} \frac{(m+1)(m+2)+1}{2(m+1)}
\end{aligned}
$$

where $\varrho=\max \left\{\rho_{1}, \rho_{2}\right\}$.
Let $C=\frac{\sin ^{2}(\varepsilon / 2)}{16}$, then $\frac{C^{k}}{\prod_{r=1}^{k}\left(q_{n-r} \cdot q_{m-r}\right)}=\frac{(n-k+1)(m-k+1)}{(n+1)(m+1)} \quad(1 \leq$ $k \leq m)$ and $\frac{C^{m+1}}{\prod_{r=1}^{m+1}\left(q_{n-r} \cdot q_{m-r}\right)}<\frac{n-m}{(n+1)(m+1)}$. Let $n \rightarrow \infty$ and implement that $\sum_{k=0}^{m} \rho_{1}^{m-k+1}(m-k+1)+1 \leq \frac{1+\rho_{1}+\rho_{1}^{2}}{\left(1-\rho_{1}\right)^{2}}$, we obtain

$$
\left|F-F_{m}\right|<L_{2} \frac{1}{m+1}
$$

where $L_{2}=\frac{16 M_{1}}{\sin ^{2}(\varepsilon / 2)} \frac{\left(1+\rho_{1}+\rho_{1}^{2}\right)}{\left(1-\rho_{1}\right)^{2}}=\frac{64 \sqrt{\Delta}\left(1+\rho_{1}+\rho_{1}^{2}\right)}{\sin ^{2}(\varepsilon / 2)\left(1-\rho_{1}\right)^{3}}$.
The truncation error bounds of tails $R_{n}^{(1)}$ of fraction (5) was established in [9].

$$
\begin{equation*}
\left|R_{n}^{(1)}-R_{m}^{(1)}\right| \leq M_{1} p_{1}^{n+1} \quad(n \geq 0) \tag{13}
\end{equation*}
$$

where $M_{1}=\frac{4\left|1+\sqrt{1+4 c_{1}}\right|}{1-p_{1}}$ and $p_{1}=\left|\frac{1-\sqrt{1+4 c_{1}}}{1+\sqrt{1+4 c_{1}}}\right|$ in the region $\{z \in \mathbb{C}: \mid \arg (z+$ $1 / 4) \mid<\pi\}$.

Theorem 2. Let elements $c_{j}(j=\overline{1, N})$ of fraction (5) satisfy the conditions

$$
\begin{gathered}
c_{1} \in G_{1}=\{z \in \mathbb{C}:|\arg (z+1 / 4)|<\pi\} \\
\sum_{s=2}^{N}\left(\left|c_{s}\right|-\Re\left(c_{s} e^{-2 i \alpha_{1}}\right)\right) \leq l \cos ^{2} \alpha_{1}, \quad l \leq \frac{1}{8}, \quad \sum_{s=2}^{N}\left|c_{s}\right| \leq C,
\end{gathered}
$$

where

$$
2 \alpha_{1}= \begin{cases}\arg c_{1}, & \text { if } \arg c_{1} \neq \pi \tag{14}\\ 0, & \text { if } \arg c_{1}=\pi\end{cases}
$$

Then 1-periodic BCF (5) converges and the truncation error bounds hold

1) if $l<1 / 8$ and $C<\frac{(1+\sqrt{1-8 l})^{2} \cos ^{2}\left(\alpha_{1}\right)}{16}$, for $n>m \geq 0$ we obtain

$$
\begin{gathered}
\left|F-F_{m}\right|<L_{1} \cdot \begin{cases}\frac{p_{1}^{m+2}-p_{2}^{m+2}}{p_{1}-p_{2}}, & \text { if } p_{1} \neq p_{2}, \\
(m+1) p^{m+1}, & \text { if } p_{1}=p_{2}=p\end{cases} \\
\text { where } L_{1}=\frac{32\left|1+\sqrt{1+4 c_{1}}\right|}{\cos ^{2} \alpha_{1}\left(1-p_{1}\right)}, p_{1}=\left|\frac{1-\sqrt{1+4 c_{1}}}{1+\sqrt{1+4 c_{1}}}\right|, p_{2}=\frac{16 C}{(1+\sqrt{1-8 l})^{2} \cos ^{2} \alpha_{1}} ;
\end{gathered}
$$

2) if $l=1 / 8$, then we obtain the truncation error bounds

$$
\begin{gathered}
\left|F-F_{m}\right|< \begin{cases}L_{1} q^{m+1} \frac{(m+1)(m+2)+1}{2(m+1)} & \text { if } C<\frac{\cos ^{2} \alpha_{1}}{16}, \\
L_{2} \frac{1}{m+1} & \text { if } C=\frac{\cos ^{2} \alpha_{1}}{16},\end{cases} \\
\text { where } q=\max \left\{\rho_{1} ; \frac{\cos ^{2} \alpha_{1}}{16}\right\}, L_{2}=\frac{32\left|1+\sqrt{1+4 c_{1}}\right|\left(1+p_{1}+p_{1}^{2}\right)}{\cos ^{2} \alpha_{1}\left(1-p_{1}\right)^{3}} .
\end{gathered}
$$

Proof. Analogically, as in the previous theorem we established the following estimates for the tails of (5)

$$
\begin{align*}
& \Re\left(R_{n}^{(1)}\right) \geq \frac{1}{2} \cos \alpha_{1}>0 \\
& \Re\left(R_{n}^{(j)} e^{-i \alpha_{1}}\right) \geq \frac{1}{2} \cos \alpha_{1} \cdot f_{n}, \quad(n \geq 1) \tag{15}
\end{align*}
$$

where α_{1} is defined by formula (14) and $f_{n}-n$-th approximant of (9).
Considering the inequality (12) and estimates (15), we obtain the truncation error bounds for (5).

Conclusions

The uniform convergence and convergence of 1-periodic branched continued fraction of the special form is proved if the element c_{1} belongs to some region and sum of the other elemets belogs to union of the parabola-like regions. The truncation error bounds is established at some restrictions of the sum of elements beginning from the second.

References

[1] Antonova T.M., Multidimensional generalization of multiply parabola convergence theorem for continued fractions, Mathematical Methods and Physicomechanical Fields, 1999, 42 (4), pp. 7-12. (in Ukrainian)
[2] Antonova T.M., Speed of Convergence for Branched Continued Fractions of Special Form, Volyn Mathematical Bulletin, 1999, 6, pp. 3-8. (in Ukrainian)
[3] Baran O.Ye., Analogue of the Worpitzky convergence criterion for branched continued fractions of a special form, Mathematical Methods and Physicomechanical Fields, 1996, 39 (2), pp. 35-38. (in Ukrainian)
[4] Baran O.Ye., Some convergence regions of branched continued fractions of special form. Carpathian Mathematical Publications, 2013, 5(1), pp. 413. (in Ukrainian)
[5] Bodnar D.I., Branched continued fractions, Naukova dumka, Kyiv, 1986. (in Russian)
[6] D.I. Bodnar and M.M. Bubniak., On Convergence of 1-periodic Branched Continued fraction of the Special Form, Mathematical Bulletin of the Shevchenko Scientific Society, 2011, Vol. 8, pp. 5-16. (in Ukrainian)
[7] D.I. Bodnar and M.M. Bubniak, Some Parabolic Convergence Regions of 1-periodic Branched Continued Fraction of the Special Form. Computerintegration technology: education, science, production, 2012, Vol. 9, pp. 5-8. (in Ukrainian)
[8] D.I. Bodnar and M.M. Bubniak, Truncation Error Bounds of Convergence or Uniform Convergence for 1-periodic Branced Continued Fraction of the Special Form, Mathematical Methods and Physicomechanical Fields, 2013, (in printed). (in Ukrainian)
[9] Bubniak M, Truncation Error Bounds for 1-periodic Branced Continued Fraction of the Special Form, Carpathian Mathematical Publications, 1, 2013, (in printed). (in Ukrainian)
[10] Dmytryshyn R.I., The multidimensional generalization of g-fractions and their application, Journal of Computational and Applied Mathematics, 2004, 164-165, pp. 265-284. http://dx.doi.org/10.1016/S0377-0427(03)00642-3
[11] Jones W.B. and Thron W.J., Continued Fractions: Analytic Theory and Applications, Encyclopedia of Mathematics and its Applications, Addison-Wesley Publishing Company, New York, 1980
[12] Kuchmins'ka Kh.Yo., Two-dimensional continued fractions, Pidstryhach Institute of Applied Problems of Mechanics and Mathematics, L'viv, 2010. (in Ukrainian)
[13] Lorentzen L. and Waadeland H., Continued Fractions with Applications, Amsterdam: North-Holland, 1992.
[14] Lorentzen L. and Waadeland H., Continued Fractions, AmsterdamParis: Atlantis Press/World Scientific, 2008, Second edition.
[15] Perron O., Die Lehre von den Kettenbrüchen, Stuttgard: B.G. TEUBNER VERLAGSGESELLSCHAFT, 1957, Band 2.
[16] Wall H.S., Analytic Theory of Continued Fractions, New York: Van Nostrand, 1948.

Dmytro I. Bodnar
Ternopil National Economic University, Professor of Mathematics dmytro_bodnar@hotmail.com

Mariia M. Bubniak
Ternopil National Economic University
mariabubnyak@gmail.com

