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Abstract

Branched continued fractions with non-equivalent variables are natural
generalization of C-fractions in solving of the problems of correspondence
to multiple power series. We obtain branched continued fractions of the
special form if values of variables are fixed. For 1-periodic branched continued
fraction of the special form we established the conditions of convergence and
uniform convergence, and the truncation error bounds.

1 Introduction

The object of our investigation is 1-periodic branched continued fraction
(BCF) of the special form. The research review concerning 1-periodic con-
tinued fraction is given in the monographs [11, 14, 15, 16]. The parabola
theorems play the important role in the analytic theory of continued frac-
tions and particularly 1-periodic continued fraction. The analogs of parabola
theorems were established for the branched continued fraction of the general
form with N branches
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where ai(k) ∈ C, i(k) = i1i2 . . . ik – multi index (1 ≤ ik ≤ N , k ≥ 1),
by D.I. Bodnar [5], T.M. Antonova [1] and for two-dimensional continued
fractions by Kh. Yo. Kuchmins’ka [12]. For the branched contionued fraction
of the special form
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where ai(k) ∈ C, i(k) – multi index, 1 ≤ ik ≤ ik−1, i0 = N – integer,
T.M. Antonova [2] proved the convergence of the fraction (2) if bi(k) = 1

and elements ai(k) satisfy the following conditions:
∑ik−1

ik=1

(
|ai(k)| − <ai(k)

)
≤

2t(1− t), |ai(k)| ≤ ρ(1− t)2, t < 1/2, ρ < 1 and established other convergence
criteria for fractions (1) and (2).

O.Ye. Baran [4] obtained the analog of the parabola theorem for fraction
(2) if partial numerators ai(k) belong to respective parabolic regions and
partial denominators bi(k) – the half-planes.

Investigating the parabola convergence regions, R.I. Dmytryshyn [10]
specified lemma 4.41 [11, p. 100]
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u+ iv
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≥ −
√
u2 + v2 − u

2x
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p

c
, (3)

where x ≥ c > 0,
√
u2 + v2− u ≤ 2p, 0 < p ≤ 1, and proved the convergence

of multidimensional generalization g-fraction
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where s0 > 0, 0 < gi(k) < 1, k = 1,∞, ip = 1, N , p = 1, k, z ∈ CN if the
following condition is valid

z ∈
⋃

α∈(−π/2;π/2)

{
z = (z1, . . . , zN) ∈ CN :

N∑
k=1

(
|zk| − <(zke

−2iα)
)
< 2 cos2 α

}
.

He also established the truncation error bounds of fraction (4) at some ad-
ditional conditions.

2 Main results

We obtain 1-periodic branched continued fractions of the special form
fraction if ai(k) = cik , bi(k) = 1 (1 ≤ ik ≤ ik−1, k ≥ 1) in fraction (2), that is
BCF next form
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where cj – complex numbers (j = 1, N), i0 = N – integer. The n-th approx-
imant of 1-periodic BCF (5) is
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(n ≥ 1;F0 = 1).
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1 + . . .
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as n-th tail q-th order of 1-periodic BCF (5) (q = 1, N ; n ≥ 1; j0 = q;

R
(q)
0 = 1; R

(0)
n = 1). Obviously, that the tails R

(q)
n (n ≥ 1, q = 2, N) satisfy

following recurrence expression

R(q)
n = R(1)

n +

q∑
s=2

cs

R
(s)
n−1

. (6)

Theorem 1. Let elements cj (j = 1, N) of (5) satisfy the condition

(c1, c2, . . . , cN) ∈ G = G1 ×G2,

where
G1 = {z ∈ C : | arg z| ≤ π − ε},

G2 =

{
(z2, . . . , zN) ∈ CN−1 :

⋃
γ∈Iε

{
N∑
s=2

(|zs| − <(zse
−2iγ)) ≤ l sin2 ε/2

}}
,

Iε =
[
−π−ε

2
, π−ε

2

]
, l and ε – some parameters such as 0 < ε < π/2, 0 < l ≤ 1

8
.

Then

1) 1-periodic BCF (5) converges uniformly on any compact of the set G;

2) the value set is ⋃
γ∈Iε

{
z ∈ C :

∣∣∣∣∣z − 2e−iγ

cos γ

∣∣∣∣∣ ≤ 2

cos γ

}
; (7)
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3) if beside above c1 ∈ G1

⋂
{z ∈ C : |z| ≤ R} and

(c2, c3, . . . , cN) ∈ G2
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(z2, . . . , zN) ∈ CN−1 :

N∑
j=2
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}
,

where R, C – some positive constants (R > 1
4

cos ε, C ≤ (1+
√

1−8l)2

16
sin2(ε/2)),

a) and also l < 1/8, C < (1+
√

1−8l)2

16
sin2(ε/2), then holds the trunca-

tion error bounds of (5)
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1 − ρm+2
2
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, if ρ1 6= ρ2,
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where F – the value of fraction (5), L1 =
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√

∆

sin2(ε/2)(1− ρ1)
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1−
√

1−8l
1+
√

1−8l
, ∆ = 1

4
+R, δ = 1

4
sin ε,

ρ1 =



√
1− 4

√
δ sin θ/2 + 4δ

1 + 4
√
δ sin θ/2 + 4δ

, if sin ε ≤
1

1 + 4R
;√

1− 4
√

∆ sin θ/2 + 4∆

1 + 4
√

∆ sin θ/2 + 4∆
, if sin ε >

1

1 + 4R
,

θ = arcsin
R sin ε√

1
16

+R2 − 1
2
R cos ε

, ρ2 =
16C

(1 +
√

1− 8l)2 sin2(ε/2)
,

b) or l = 1/8, then we obtain the following truncation error bounds

|F − Fm| <


L1%

m+1
(m+ 1)(m+ 2) + 1

2(m+ 1)
if C <

sin2(ε/2)

16
,

L2

1

m+ 1
if C =

sin2(ε/2)

16
,

where % = max

{
ρ1;

sin2(ε/2)

16

}
, L2 =

64
√

∆(1 + ρ1 + ρ2
1)

sin2(ε/2)(1− ρ1)3
.
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Proof. 1. We use multidimensional analog of Stieltjes-Vitali Theorem [5,
theorem 2.17, p. 66] for proving uniform convergence of 1-periodic BCF. We
are going to investigate the functional fraction following form(

1 +
∞
D
k=1

ik−1∑
ik=1

zik
1

)−1

(8)

and it’s respective the sequence n-th approximants {Fn(z)}∞n=1, where z =
(z1, z2, ..., zN). We prove that this sequence is bounded uniformly if z ∈ G.

In this order we estimate modules of tail R
(j)
n (z) of the functional fraction

(n ≥ 0, j = 1, N). Considering that z1 ∈ G1, γ ∈ Iε and according to the
parabola theorem 3.43 [14, p. 151] we obtain

<(R(1)
n (z)e−iγ) ≥ 1

2
cos γ ≥ 1

2
sin(ε/2).

We consider 1-periodic continued fraction

1 +
∞
D
k=1

−2l

1
(9)

and denote fn – n-th approximant (n ≥ 1, f0 = 1) of it. We prove by the
mathematical induction by n (n ≥ 1) for every j (2 ≤ j ≤ N), that

<
(
R(j)
n (z)e−iγ

)
≥ 1

2
sin(ε/2) · fn. (10)

For n = 1, using (3), leads to

<(R
(j)
1 (z)e−iγ) = <(R

(1)
1 (z)e−iγ) +

j∑
s=2

<(zse
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≥ 1

2
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j∑
s=2

<

(
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−2iγ

e−iγ

)

≥ 1

2
sin(ε/2)−

j∑
s=2

(|zs| − <(zse
−2iγ))

2<e−iγ

=
1

2
sin(ε/2)(1− 2l) =

1

2
sin(ε/2) · f1.
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By induction hypothesis for k holds: <(R
(j)
k (z)e−iγ) ≥ 1

2
sin(ε/2) · fk

(2 ≤ j ≤ N). We define

qk =
1

2
sin(ε/2) · fk. (11)

Implementing recurrence expressions (6) and induction, we obtain

<(R
(j)
k+1(z)e−iγ) = <(R

(1)
k+1(z)e−iγ) +

j∑
s=2

<

(
zse
−iγ

R
(s)
k (z)

)
≥

1

2
sin

ε

2
−

j∑
s=2

(|zs| − <(zse
−2iγ))

2<(R
(s)
k (z)e−iγ)

≥ 1

2
sin

ε

2
−
∑j

s=2(|zs| − <(zse
−2iγ))

2qk

=
1

2
sin

ε

2

(
1 +

− l · sin(ε/2)

qk

)
=

1

2
sin

ε

2
· fk+1 = qk+1.

Since 2l ≤ 2 · 1
8

= 1
4
, then 1

2
< fn ≤ 1 by Worpitzky’s Theorem. That

is why the following inequalities are valid:
∣∣∣R(j)

n (z)
∣∣∣ ≥ <(R(j)

n (z)e−iγ
)
>

1
4

sin(ε/2) for any γ ∈ Iε. Since Fn(z) =
(
R

(N)
n (z)

)−1

we obtain: Fn(z) ∈{
z ∈ C : |z| < 4

sin ε/2

}
, that guarantee the sequence of {Fn(z)}∞n=1 is bounded

uniformly.
We prove the convergence of that sequence on the compact D = D1 ×

. . .×DN of set G, where D1 =
{
z ∈ C : |z| ≤ 1

4N
, | arg z| ≤ π − ε

}
and

Dj =
{
zj ∈ C : |zj| ≤ l sin2 ε/2

4N

}
(j = 2, N). Since zj ∈ Dj (j = 1, N), then

∑N
s=2(|zs| − <(zse

−2iγ)) ≤∑N
s=2 2 · l sin

2 ε/2
4N

< l sin2(ε/2), that is D ⊂ G. The convergence of approxi-
mants Fn(z) on the compact D leads from the multidimensional analog Wor-
pitzky’s Theorem [3, p. 35], implementing |zs| ≤ 1

4N
(s = 1, N). The uniform

convergence of fraction (5) on any compact of set G follows from the multi-
dimensional analog of Stiltijes-Vitali Theorem.

2. We prove, that the value region of (5) is the set (7). We consider

1-periodic continued fraction 1 +
∞
D
k=1

−2l sin2(ε/2)/ cos2 γ
1

and denote hn it’s n-th

approximant (n ≥ 0, h0 = 1).
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We can prove by the mathematical induction by n for any j (2 ≤ j ≤ N)
and any γ ∈ Iε that following inequalities are valid

<(R(j)
n e−iγ) ≥ 1

2
cos γ · hn

analogically, as inequalities (11).

The elements of n-th approximat hn (n ≥ 1) satisfy the condition: 2l sin2(ε/2)
cos2 γ

≤
2l cos2(π−ε)/2

cos2 γ
≤ 2 · l ≤ 1

4
, that is infn∈N hn = 1

2
and <

(
R

(j)
n e−iγ

)
≥ 1

4
cos γ (γ ∈

Iε). Considering that Fn =
(
R

(N)
n

)−1

and |R(N)
n | ≥ <(R

(N)
n e−iγ) ≥ 1

4
cos γ,

we obtain Fn ∈
{
z ∈ C :

∣∣∣z − 2e−iγ

cos γ

∣∣∣ ≤ 2
cos γ

}
. Since γ ∈ Iε, then the value of

n-th approximant Fn (n ≥ 1) belongs to (7).
3. Using the inequality

|Fn − Fm| ≤
1

gn · gm[
m∑
k=0

Ck∏k
r=1(gn−r · gm−r)

∣∣∣R(1)
n−k −R

(1)
m−k

∣∣∣+
Cm+1∏m+1

r=1 (gn−r · gm−r)

]
, (12)

where n > m > 0,
∑N

s=2 |cs| ≤ C and |R(j)
n | ≥ gn (n ≥ 0; j = 2, N), was

proved in [9], we estimate the truncation error bounds of fraction (5).

We use uniform the truncation error bounds for estimating tails R
(1)
n of (5)

|R(1)
n −R(1)

m | ≤M1ρ
m+1
1 (n > m ≥ 0) where M1 = 4

√
∆

1−ρ1 and

ρ1 =



√
1− 4

√
δ sin θ/2 + 4δ

1 + 4
√
δ sin θ/2 + 4δ

, if δ ·∆ ≤
1

16
;√

1− 4
√

∆ sin θ/2 + 4∆

1 + 4
√

∆ sin θ/2 + 4∆
, if δ ·∆ >

1

16
,

on the set E =
{
z ∈ C : | arg(z + 1

4
)| ≤ π − θ, δ ≤ |z + 1

4
| ≤ ∆

}
that was

proved in [9].
The values of parameters δ, θ, ∆, what were given in this theorem, were

found by elementary calculation provided by condition: S ⊂ E, where S =
{z ∈ C : |z| ≤ R, | arg z| ≤ π−ε}. Since δ ·∆ = sin ε

16
(1+4R), then conditions

δ ·∆ ≤ 1
16

and sin ε ≤ 1
1+4R

are equivalent and the value ρ1 is defined as in
this theorem (Figure 1).
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Figure 1: S ⊂ E

3 a. Let l < 1
8
. Using the same scheme as in problem 13 [14, p. 49],

we proved, that the value fn– n-th approximat of 1-periodic continued frac-
tion (9) is equal fn = xn+2−yn+2

xn+1−yn+1 (n ≥ 0), where x = 1+
√

1−8l
2

, y = 1−
√

1−8l
2

– the attracting and the repelling fixed points of linear fractional transfor-
mation s(ω) = 1 − 2l/ω . Using inequalities (10) and denotations (11) for
1 ≤ k ≤ m we obtain

Ck∏k
r=1 (qn−r · qm−r)

=
(4C/ sin2(ε/2))k∏k
r=1 (fn−r · fm−r)

=
(4C/ sin2(ε/2))k

xn+1 − yn+1

xn−k+1 − yn−k+1
·

xm+1 − ym+1

xm−k+1 − ym−k+1

=

(
4C

x2 sin2(ε/2)

)k
1− (y/x)n−k+1

1− (y/x)n+1

1− (y/x)m−k+1

1− (y/x)m+1
.

We denote f−1 = 1 and for k = m+ 1 the following estimations hold

Cm+1∏m+1
r=1 (qn−r · qm−r)

=
(4C/ sin2(ε/2))m+1∏m+1

r=1 (fn−r · fm−r)
=

sin(ε/2)

2

(
4C

x2 sin2(ε/2)

)m+1

1− (y/x)n−m

1− (y/x)n+1
·

1− (y/x)

1− (y/x)m+1
<

(
4C

x2 sin2(ε/2)

)m+1
1− (y/x)n−m

1− (y/x)n+1

1− y/x
1− (y/x)m+1

.

Let C < (1−8l) sin2(ε/2)
16

. We denote d = y/x and, implementing 1−dm−k+1

1−dm+1 ≤
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1−dm
1−dm+1 (1 ≤ k ≤ m), we obtain

Ck∏k
r=1 (qn−k · qm−k)

≤ ρk2
1− dm

1− dm+1

where ρ2 =
16C

(1 +
√

1− 8l)2 sin2(ε/2)
. Using the inequality (12), where gn =

qn (n ≥ 1) and 1−dm
1−dm+1 < 1, let n → ∞ and we obtain the truncation error

bounds (5)

|F − Fm| ≤
16

sin2(ε/2)

(
M1ρ

m+1
1 +

1− dm

1− dm+1

m∑
k=1

M1ρ
m−k+1
1 · ρk2 +

1− d
1− dm+1

ρm+1
2

)

< L1 ·


ρm+2

1 − ρm+2
2

ρ1 − ρ2

, if ρ1 6= ρ2,

(m+ 1)ρm+1, if ρ1 = ρ2 = ρ,

where L1 =
16M1

sin2(ε/2)
=

64
√

∆

sin2(ε/2)(1− ρ1)
.

3 b. Let l = 1
8
. We denote f̂n – n-th approximant of 1-periodic contin-

ued fraction, which elements are equal −1/4. Implementation the formula

(3.13) [5], we obtain f̂n = n+2
2(n+1)

and
∏k

r=1 fn−r = n+1
2k(n−k+1)

. We estimate for
1 ≤ k ≤ m

Ck∏k
r=1 (qn−r · qm−r)

=

(
4C

sin2(ε/2)

)k
1∏k

r=1

(
f̂n−r · f̂m−r

)
=

(
16C

sin2(ε/2)

)k
(n− k + 1)(m− k + 1)

(n+ 1)(m+ 1)

and for k = m+ 1

Cm+1∏m+1
r=1 (qn−k · qm−k)

=
sin(ε/2)

4

(
16C

sin2(ε/2)

)m+1

n−m
(n+ 1)(m+ 1)

<

(
16C

sin2(ε/2)

)m+1
n−m

(n+ 1)(m+ 1)
.
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Let C < sin2(ε/2)
16

, then let n → ∞ and, implementing
∑m

k=0(m − k + 1) =
(m+ 1)(2 +m)/2, we obtain

|F − Fm| ≤
16M1

sin2(ε/2)
·
∑m

k=0 ρ
m−k+1
1 ρk2(m− k + 1) + ρm+1

2

(m+ 1)

< L1%
m+1

(m+ 1)(m+ 2) + 1

2(m+ 1)
,

where % = max{ρ1, ρ2}.

Let C = sin2(ε/2)
16

, then
Ck∏k

r=1 (qn−r · qm−r)
=

(n− k + 1)(m− k + 1)

(n+ 1)(m+ 1)
(1 ≤

k ≤ m) and
Cm+1∏m+1

r=1 (qn−r · qm−r)
<

n−m
(n+ 1)(m+ 1)

. Let n → ∞ and imple-

ment that
∑m

k=0 ρ
m−k+1
1 (m− k + 1) + 1 ≤ 1+ρ1+ρ21

(1−ρ1)2
, we obtain

|F − Fm| < L2

1

m+ 1
,

where L2 =
16M1

sin2(ε/2)

(1 + ρ1 + ρ2
1)

(1− ρ1)2
=

64
√

∆(1 + ρ1 + ρ2
1)

sin2(ε/2)(1− ρ1)3
.

The truncation error bounds of tails R
(1)
n of fraction (5) was established

in [9].
|R(1)

n −R(1)
m | ≤M1p

n+1
1 (n ≥ 0), (13)

where M1 = 4|1+
√

1+4c1|
1−p1 and p1 =

∣∣∣1−√1+4c1
1+
√

1+4c1

∣∣∣ in the region {z ∈ C : | arg(z +

1/4)| < π}.

Theorem 2. Let elements cj (j = 1, N) of fraction (5) satisfy the conditions

c1 ∈ G1 = {z ∈ C : | arg(z + 1/4)| < π},
N∑
s=2

(|cs| − <(cse
−2iα1)) ≤ l cos2 α1, l ≤ 1

8
,

N∑
s=2

|cs| ≤ C,

where

2α1 =

{
arg c1, if arg c1 6= π,

0, if arg c1 = π.
(14)

Then 1-periodic BCF (5) converges and the truncation error bounds hold
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1) if l < 1/8 and C <
(1 +

√
1− 8l)2 cos2(α1)

16
, for n > m ≥ 0 we obtain

|F − Fm| < L1 ·


pm+2

1 − pm+2
2

p1 − p2

, if p1 6= p2,

(m+ 1)pm+1, if p1 = p2 = p,

where L1 =
32|1 +

√
1 + 4c1|

cos2 α1(1− p1)
, p1 =

∣∣∣∣∣1−
√

1 + 4c1

1 +
√

1 + 4c1

∣∣∣∣∣, p2 =
16C

(1 +
√

1− 8l)2 cos2 α1

;

2) if l = 1/8, then we obtain the truncation error bounds

|F − Fm| <


L1q

m+1
(m+ 1)(m+ 2) + 1

2(m+ 1)
if C <

cos2 α1

16
,

L2

1

m+ 1
if C =

cos2 α1

16
,

where q = max

{
ρ1;

cos2 α1

16

}
, L2 =

32|1 +
√

1 + 4c1|(1 + p1 + p2
1)

cos2 α1(1− p1)3
.

Proof. Analogically, as in the previous theorem we established the following
estimates for the tails of (5)

<(R(1)
n ) ≥ 1

2
cosα1 > 0

<(R(j)
n e−iα1) ≥ 1

2
cosα1 · fn, (n ≥ 1)

(15)

where α1 is defined by formula (14) and fn – n-th approximant of (9).
Considering the inequality (12) and estimates (15), we obtain the trun-

cation error bounds for (5).

Conclusions

The uniform convergence and convergence of 1-periodic branched contin-
ued fraction of the special form is proved if the element c1 belongs to some
region and sum of the other elemets belogs to union of the parabola-like re-
gions. The truncation error bounds is established at some restrictions of the
sum of elements beginning from the second.
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