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Abstract. The process of rehabilitation after heart disease is a major prob-
lem today. Existing mathematical model is phenomenological. This paper
presents a mathematical model of the heart rate and pressure under the in-
fluence of physical activity. The identification of the presented model based
on the modified gradient Levenberg-Markvadt method supplemented with the
procedure of initial ratios choice is introduce for the first time.
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1. Introduction

One of today’s applied problems which appear in medicine is to predict the
heart rate and blood pressure dynamics under exercise stress. This is the main task
in the planning process of rehabilitation after the cardiovascular system diseases,
especially myocardial infarction. Today it is dealt with using empirical methods;
however, the use of mathematical modeling would allow avoiding subjective as-
sessments and increase the reliability of the forecast.
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The work is dedicated to building a model of the pulse and pressure dynamics
under the influence of physical activity and the method of their identification. The
researches that are devoted to the mathematical modeling of the cardiovascular and
respiratory systems of the human body under exercise stress have been analyzed
to find a theoretical basis for this study.

On the basis of similarities between the cardiovascular system of man and
electrical systems O. Frank in the early 20th century suggested modeling the car-
diovascular system through an electrical circuit [1]. This idea is implemented in a
series of papers [2]-[7]. The disadvantages of this approach are the relatively low
accuracy and complexity of construction, of identification and modification of the
model by a professional not familiar with the theory of electrical circuits. Repre-
sentation of the cardiovascular system with a system of differential equations acts
as much more powerful tool for modelling.

Well-known paper [8] is based on the use of differential equations that model
the work of a four-chambered heart described by Grodins and characterizes the
work of small and large circles of blood circulation, left and right ventricles and
baroreceptors. Also, this model takes into account Starling’s and Bowditch’s ef-
fects and self-regulation in the peripheral areas. This model can be used to analyze
the blood pressure in a brain and measure blood pressure during orthostatic stress.
In [9]-[10], based on the study [8], there is formed the overall picture of combina-
tion of the cardiovascular and respiratory systems in the form of eleven differential
equations representing contractility of the left and right ventricles of the heart, the
relationship between heart rate and contractility, gases balance equation, oxygen
consumption in the exercise process, the exchange of gases in the tissue of the
body. In [11] the models of the cardiovascular and respiratory systems are com-
bined with a quantitative representation of the executable exercise.

Models, which are described in [3]-[11], are phenomenological models that
show the flow of processes in the body at a qualitative level. At the same time,
the practical use of models of the cardiovascular system must take into account
the specific features of the body and we should have the possibilities of creating a
database of statistical information based on the data used in daily clinical practice,
i.e. based only on the dynamics of the heart rate and blood pressure. Thus follow-
ing the ideology of [12]-[13] we construct a mathematical model of the response
of the cardiovascular system to exercise stress, which will manifest itself in dy-
namics of heart rate and blood pressure, and provide an identification method for
the developed model.
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2. Mathematical Model

Clinical experience has identified two main stages of functioning of the car-
diovascular system under exercise stress: period of response of the cardiovascular
system to stress and recovery period. The last one is accompanied with increased
values of pulse and pressure and they increase in proportion to the intensity of
physical activity, while the recovery period makes them return to their original
state. The general structure of the model is visualized in Figure 1
W is load, W

′

is change of load, H, P are heart rate and blood pressure, H0, P0 are

Figure 1. Parameters which characterize cardiovascular system (CVS) under the
influence of physical activity to improve heart rate and pressure

initial values of heart rate and blood pressure.
The stage of the body’s response to exercise can be selected using the Michaelis-

Menten function:
M(t) =

M(t)
1 + M(t)

, (1)

which is a smooth analogue of the Heaviside function. Its value is close to 1 at
high volume load and reduced to 0 with a sharp decrease in physical activity. The
last activates the body’s recovery process defined as characteristic equal to 1 −
M(t). The period of the phase transition of the organism from stress to recovery
is characterized by certain inertia. It is shown as the delay argument t − t0 in the
characteristics of the recovery process

R(t) = 1 − M(t − t0) = 1 −
W(t − t0)

1 + W(t − t0)
, (2)

where t0 is transition duration from the time of unloading until the activation pro-
cess of recovery.
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As the pressure changes are proportional to the change of physical activity as
p, h ≈ W

′

, their dynamics can be described by the following Cauchy problem for
a set of differential equations:

h
′

(t) = A1W
′

(t)
W(t)

(1 + W(t − t0))
−

(
1 −

W(t − t0)
(1 + W(t − t0))

)
A2hA3(t), (3)

p
′

(t) = B1W
′

(t)
W(t)

(1 + W(t − t0))
−

(
1 −

W(t − t0)
(1 + W(t − t0))

)
B2hB3(t), (4)

h(0) = 0, (5)

p(0) = 0, (6)

where A1, B1 are the indicators of the dynamics of the exercise stress on the change
of heart rate and blood pressure; A2, B2 are the indicators of speed adaptation to
exercise stress relieving; A3, B3 are the coefficients of the heart rate and blood
pressure influence in the process of adaptation to unloading; h, p are excess levels
of functional heart rate Hm and blood pressure Pm.

h = H − Hm, (7)

p = P − Pm. (8)

3. Identification of Mathematical Model

The offered mathematical model requires parameter identification, which can
be carried out by the root-mean-square criterion.

~a = arg min
~A

Nt∑
j=1

(h̃(~A, t j) − (H j − Hm))2, (9)

~b = arg min
~B

Nt∑
j=1

( p̃(~B, t j) − (P j − pm))2, (10)

where Nt is dimension of the set of points measured for the experiment; ~a, ~b is the
solution of differential equations for a given set of coefficients ~A, ~B at the observa-
tion point t.

To minimize the functional (9)–(10) let’s use modified Levenberg–Marquardt
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gradient method. Its implementation needs to build the initial approximation for
the coefficients of the model. The identification algorithm is divided into two lev-
els. The top level is designed to search the optimal values of coefficients A3, B3
using the exhaustive search of possible values on a uniform grid covering some of
empirically selected ranges. After selecting coefficients A3, B3, coefficients A1, A2,

B1, B2 are determined by the Levenberg-Marquardt method. Their initial values
are set by the following equations:

A1 =
h
′

W ′ =
h3 − h1

W3 −W1
, (11)

A2 =
hk − hk+2

2∆t · hk
(12)

B1 =
p
′

W ′ =
p3 − p1

W3 −W1
, (13)

B2 =
pk − pk+2

2∆t · pk
(14)

where t is time of exercise stress removal.
Considering that W(t) ≈ 1,R(t − t0) ≈ 0,W(tk) ≈ 0,R(t − t0) ≈ 1 are at the

start of the reaction process and dynamics change parameters are close to linear at
the beginning of the recovery process. In this case the differential equations could
be simplified and the corresponding values are obtained from the approximation
of difference-differential operators ratios.

4. Results

To check the adequacy of the designed model we have used a tool for checking
exercise capacity, i.e. ergometer. The observations were conducted over a group
of patients of the lightest functional class who were at the final stage of the reha-
bilitation process. Dynamics of reactions to an identical exercise was recorded at
intervals of 10 days during the process of the final stage of the rehabilitation pro-
gram. The values of evolution of the dynamics parameters of the cardiovascular
system for some of the observed patients are presented in Table 1.

The data were used to simulate the heart rate and blood pressure at various
stages of rehabilitation using the assessment of maximum relative errors. The val-
ues of the identified errors and ratios are set forth in Table 2.
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Table 1. The values of the heart rate and blood pressure received during the inspec-
tion for exercise capacity

W H1 H2 H3 H4 H5 P1 P2 P3 P4 P5
0 96 94 93 82 61 158 150 155 140 130
25 124 115 115 90 81 175 165 170 165 150
25 120 110 119 88 82 180 175 170 165 150
50 130 120 125 90 87 200 180 180 180 160
0 131 122 119 83 68 200 178 170 180 170
0 117 110 97 75 61 200 175 170 170 172
0 111 95 89 70 64 180 172 165 170 165
0 108 92 88 70 60 172 170 165 160 140
0 104 97 85 71 63 170 165 160 160 138
0 88 95 82 72 63 170 164 160 155 134
0 86 91 87 77 62 172 160 156 158 140
0 86 92 85 74 62 170 145 156 155 135
0 78 88 81 72 63 150 141 155 150 135
0 80 88 79 73 62 145 140 150 140 130

Table 2. The value of heart rate and blood pressure received during the inspection
body for exercise capacity

N x1 x2 x3 x4 ErrH,% ErrP,%
1 0,7656 0,0303 0,8456 0,3704 9,53 5,16
2 0,6250 0,0616 0,6426 0,3519 3,33 4,14
3 1,4528 0,0471 0,4092 0,0899 2,00 2,75
4 0,6027 0,0160 0,7779 0,0701 7,92 4,93
5 0,9291 -0,0056 0,7303 0,2704 6,09 3,93

The maximum error during the whole period was 9,53% for heart rate and
5,16% for the blood pressure.

The obtained results indicate the adequacy of the proposed mathematical model
for the analyzed phase of the rehabilitation process. The results of the identifica-
tion of the model describing dependence of the main organism stress indicators
at the initial and final periods of rehabilitation process are visually presented in
Figures 2-3.
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(a) heart rate (b) arterial pressure

Figure 2. The results of identification of the dynamic model parameters of the heart
rate and blood pressure under exercise stress of the initial phase

(a) heart rate (b) arterial pressure

Figure 3. The results of identification of the dynamic model parameters of the heart
rate and blood pressure under exercise stress of the final stage

Analysis of the graphs shows a decline of initial values of the heart rate and
blood pressure as a result of the rehabilitation program; there is also acceleration
of the process of recovery of the heart rate when exercise stress is removed.

5. Conclusions

This paper presents peculiarities of the process of rehabilitation after uncom-
plicated myocardial infarction, the analysis of the main approaches with emphasis
on their main weaknesses. A mathematical model of the heart rate and blood pres-
sure under the influence of physical activity is designed using a set of differential
equations taking into account the Michaelis-Menten law during the period of reha-
bilitation, which allows predicting the body’s response to dosed physical load. The
method of identifying a set of differential equations that model the dynamics of
heart rate and blood pressure under the influence of physical activity on the basis
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of the modified gradient Levenberg-Markvadt method supplemented with the pro-
cedure of initial ratios choice is introduced for the first time and that made possible
to confirm the adequacy of the developed mathematical model.
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