## CURRENT ISSUES OF MATHEMATICS

## DOI https://doi.org/10.30525/978-9934-26-043-8-1

# ROBUST STABILITY AND EVALUATION OF THE QUALITY FUNCTIONAL FOR LINEAR CONTROL SYSTEMS WITH MATRIX UNCERTAINTY 

Aliluiko A. M.<br>Candidate of Physical and Mathematical Sciences, Associate Professor, Associate Professor at the Department of Applied Mathematics West Ukrainian National University<br>Ternopil, Ukraine

Aliluiko M. S.
Candidate of Economic Sciences, Lecturer at the Service, Technology and Labor Protection Department Ternopil Volodymyr Hnatiuk National Pedagogical University Ternopil, Ukraine

Consider a continuous linear dynamical control system:

$$
\begin{equation*}
\dot{x}=(A+\Delta A(t)) x+(B+\Delta B(t)) u, y=C x+D u \tag{1}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$ and $y \in \mathbb{R}^{l}$ are state, control, and observable object output vectors respectively, $A, B, C$ and $D$ are constant matrices of corresponding sizes $n \times n, n \times m, l \times n$ and $l \times m$, and $\Delta A(t)=F_{A} \Delta_{A}(t) H_{A}$, $\Delta B(t)=F_{B} \Delta_{B}(t) H_{B}$ are system uncertainties, where $F_{A}, F_{B}, H_{A}, H_{B}$ are constant matrices of corresponding size and matrices uncertainties $\Delta_{A}(t)$ and $\Delta_{B}(t)$ satisfy the constraints

$$
\left\|\Delta_{A}(t)\right\| \leq 1,\left\|\Delta_{B}(t)\right\| \leq 1 \text { or }\left\|\Delta_{A}(t)\right\|_{F} \leq 1,\left\|\Delta_{B}(t)\right\|_{F} \leq 1, t \geq 0 .
$$

Hereinafter, $\|\cdot\|$ is Euclidean vector norm and spectral matrix norm, $\|\cdot\|_{F}$ is matrix Frobenius norm, $I_{n}$ is the unit $n \times n$ matrix, $X=X^{\mathrm{T}}>0$ $(\geq 0)$ is a positive (nonnegative) definite symmetric matrix.

We control the system (1) with output feedback:

$$
\begin{equation*}
u=K y, K=K_{0}+\tilde{K}, \tilde{K} \in \mathrm{E} \tag{2}
\end{equation*}
$$

where E is an ellipsoidal set of matrices $\mathrm{E}=\left\{K \in \mathbb{R}^{m \times l}: K^{\mathrm{T}} P K \leq Q\right\}$, where $P=P^{\mathrm{T}}>0$ and $Q=Q^{\mathrm{T}}>0$ are symmetric positive definite matrices of corresponding sizes $m \times m$ and $l \times l$.

We introduce on the set of matrices $\mathrm{K}_{D}=\left\{K: \operatorname{det}\left(I_{m}-K D\right) \neq 0\right\}$ a nonlinear operator

$$
\mathrm{D}: \mathbb{R}^{m \times l} \rightarrow \mathbb{R}^{m \times l}, \mathrm{D}(K)=\left(I_{m}-K D\right)^{-1} K \equiv K\left(I_{l}-D K\right)^{-1}
$$

Theorem 1. Suppose that for a positive definite matrix $X=X^{\mathrm{T}}>0$ and for some $\varepsilon_{1}, \varepsilon_{2}>0$ the matrix inequalities $\Delta=D^{\mathrm{T}} Q D-G^{\mathrm{T}} P G<0$, $G=I_{m}-K_{0} D$ and

$$
\left[\begin{array}{ccccc}
\Omega & X B+\varepsilon_{2} C^{\mathrm{T}} \mathrm{D}^{\mathrm{T}}\left(K_{0}\right) H_{B}^{\mathrm{T}} H_{B} & C_{0}^{\mathrm{T}} & X F_{A} & X F_{B} \\
B^{\mathrm{T}} X+\varepsilon_{2} H_{B}^{\mathrm{T}} H_{B} \mathrm{D}\left(K_{0}\right) C & -G^{\mathrm{T}} P G+\varepsilon_{2} H_{B}^{\mathrm{T}} H_{B} & D^{\mathrm{T}} & 0 & 0 \\
C_{0} & D & -Q^{-1} & 0 & 0 \\
F_{A}^{\mathrm{T}} X & 0 & 0 & -\varepsilon_{1} I & 0 \\
F_{B}^{\mathrm{T}} X & 0 & 0 & 0 & -\varepsilon_{2} I
\end{array}\right]<0
$$

holds, where $C_{0}=C+D \mathrm{D}\left(K_{0}\right) C$,

$$
\Omega=\left(A+B \mathrm{D}\left(K_{0}\right) C\right)^{\mathrm{T}} X+X\left(A+B \mathrm{D}\left(K_{0}\right) C\right)+\varepsilon_{1} H_{A}^{\mathrm{T}} H_{A}+\varepsilon_{2} C^{\mathrm{T}} \mathrm{D}^{\mathrm{T}}\left(K_{0}\right) H_{B}^{\mathrm{T}} H_{B} \mathrm{D}\left(K_{0}\right) C .
$$

Then any control (2) ensures asymptotic stability of the zero state for system (1) and the general Lyapunov function $v(x)=x^{\mathrm{T}} X x$.

Consider a control system (1), (2) with quadratic quality functional

$$
J\left(u, x_{0}\right)=\int_{0}^{\infty} \varphi(x, u) d t, \varphi(x, u)=\left[\begin{array}{ll}
x^{\mathrm{T}} & u^{\mathrm{T}}
\end{array}\right] \Phi\left[\begin{array}{l}
x  \tag{3}\\
u
\end{array}\right], \Phi=\left[\begin{array}{cc}
S & N \\
N^{T} & R
\end{array}\right]>0
$$

where $x_{0}$ is initial vector, $S=S^{\mathrm{T}}>0, R=R^{\mathrm{T}}>0$, and $N$ given constant matrices.

We need to describe the set of controls (2) that would provide asymptotic stability for the state $x \equiv 0$ of system (1) and a bound

$$
\begin{equation*}
J\left(u, x_{0}\right) \leq \omega \tag{4}
\end{equation*}
$$

where $\omega>0$ is some maximal admissible value of the functional.

Theorem 2. [1, p. 61] Suppose that for a positive definite matrix $X=X^{\mathrm{T}}>0$ and for some $\varepsilon_{1}, \varepsilon_{2}>0$ the matrix inequalities $x_{0}^{\mathrm{T}} X x_{0} \leq \omega$ and

$$
\begin{equation*}
G^{\mathrm{T}} P G-D^{\mathrm{T}} Q D>R, \tag{5}
\end{equation*}
$$

$$
\left[\begin{array}{ccccc}
Z & N_{0} & C_{0}^{\mathrm{T}} & X F_{A} & X F_{B}  \tag{6}\\
N_{0}^{\mathrm{T}} & R-G^{\mathrm{T}} P G & D^{T} & 0 & 0 \\
C_{0} & D & Q^{-1} & 0 & 0 \\
F_{A}^{\mathrm{T}} X & 0 & 0 & -\varepsilon_{1} I & 0 \\
F_{B}^{\mathrm{T}} X & 0 & 0 & 0 & -\varepsilon_{2} I
\end{array}\right]<0
$$

holds, where

$$
\begin{gathered}
Z=\left(A+B \mathrm{D}\left(K_{0}\right) C\right)^{\mathrm{T}} X+X\left(A+B \mathrm{D}\left(K_{0}\right) C\right)+L_{0}^{\mathrm{T}} \Phi L_{0}+\varepsilon_{1} H_{A}^{\mathrm{T}} H_{A}+\varepsilon_{2} C_{*}^{\mathrm{T}} C_{*}, \\
C_{0}=C+D \mathrm{D}\left(K_{0}\right) C, L_{0}^{\mathrm{T}}=\left[\begin{array}{ll}
I_{n} & C^{\mathrm{T}} \mathrm{D}^{\mathrm{T}}\left(K_{0}\right)
\end{array}\right] \\
N_{0}=X B+N+C^{\mathrm{T}} \mathrm{D}^{\mathrm{T}}\left(K_{0}\right) R+\varepsilon_{2} C_{*}^{\mathrm{T}} H_{B}, C_{*}=H_{B} \mathrm{D}\left(K_{0}\right) C .
\end{gathered}
$$

Then any control (2) ensures asymptotic stability of the zero state for system (1), the general Lyapunov function $v(x)=x^{\mathrm{T}} X x$, and a bound on the functional (4).

Numerical experiment. Consider a control system for a double oscillator. It is system of two solids that connected by a spring and slide without a friction along of horizontal rod (Fig. 1). This system is defined with two linear differential equations of order two, or, in vector-matrix form:

$$
\begin{equation*}
\dot{x}=(A+\Delta A(t)) x+B u \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
A+\Delta A(t)= & {\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{k_{0}}{m_{1}} & \frac{k_{0}}{m_{1}} & 0 & 0 \\
\frac{k_{0}}{m_{2}} & -\frac{k_{0}}{m_{2}} & 0 & 0
\end{array}\right]+F_{A} \Delta(t) H_{A}, B=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], F_{A}=\left[\begin{array}{c}
0 \\
0 \\
-\delta \\
\delta
\end{array}\right], } \\
& H_{A}=\left[\begin{array}{llll}
1 & -1 & 0 & 0
\end{array}\right], x=\left[\begin{array}{llll}
x_{1} & x_{2} & \dot{x}_{1} & \dot{x}_{2}
\end{array}\right]^{\mathrm{T}} .
\end{aligned}
$$



Fig. 1. A two-masse mechanical system
Here $x_{1}$ and $\dot{x}_{1}$ are coordinate and velocity respectively for the first solid, $x_{2}$ and $\dot{x}_{2}$ are coordinate and velocity respectively for the second solid, $m_{1}$ and $m_{2}$ are masses of the first and second solids respectively. We define a stiffness coefficient as variable periodic function of time $k=k_{0}+\delta \Delta(t)$, where $\Delta(t)=\sin (\varpi t), \delta \ll 1$ is the amplitude of harmonic oscillations, and $\varpi$ is the frequency parameter.

$$
\text { Let } m_{1}=1, m_{2}=1, k_{0}=2, \delta=0,02, \Delta(t)=\sin (t / 5) \text {. }
$$

We assume that the output vector

$$
y=C x+D u=\left[\begin{array}{c}
\dot{x}_{1}+u \\
x_{2}
\end{array}\right], C=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right], D=\left[\begin{array}{l}
1 \\
0
\end{array}\right],
$$

can be measured. We find control in the form static output feedback $u=K y$, where $K=\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right]=K_{0}+\tilde{K}$. We find the vector $K_{0}=\left[\begin{array}{ll}1,6938 & 0,1089\end{array}\right]$ that ensures asymptotic stability for system $\dot{x}=\left(A+B \mathrm{D}\left(K_{0}\right) C\right) x$, Here the spectrum equals $\sigma\left(M_{0}\right)=\{-0,3259 \pm 1,6913 i ;-0,8333 ;-0,3296\}$. The behavior of solutions of system with matrix uncertainty (7) with control $u=K_{0} y$ and initial vector $x_{0}=\left[\begin{array}{llll}1 & -2 & 0 & 2\end{array}\right]^{\mathrm{T}}$.

For demonstration of Theorem 2 we define a matrix functional (3): $S=0,1 I_{4}, R=0,01, N^{T}=\left[\begin{array}{llll}0,01 & 0 & 0 & 0,01\end{array}\right]$. Using the Matlab suite, we find $P=39,5751$ and positive definite matrices
$Q=\left[\begin{array}{ll}29,6673 & 11,8521 \\ 11,8521 & 17,0069\end{array}\right], X=\left[\begin{array}{cccc}114,3996 & -49,8299 & 42,2629 & 37,6176 \\ -49,8299 & 55,1945 & -15,0903 & -5,6888 \\ 42,2629 & -15,0903 & 36,7322 & 15,6111 \\ 37,6176 & 5,6888 & 15,6111 & 39,8411\end{array}\right]$,
that satisfy the inequalities (5), (6) for $\varepsilon_{1}=0,01$.
Thus, for all values of the vector of feedback amplification coefficients $K=K_{0}+\tilde{K}$ from a closed region $\mathrm{E}_{0}$ bounded by the ellipse $\left(K-K_{0}\right) Q^{-1}\left(K-K_{0}\right)^{\mathrm{T}} \leq P^{-1}$, the motion of the system of two solids in a neighborhood of the zero state is asymptotically stable. Here $v(x)=x^{\mathrm{T}} X x$ is a general Lyapunov function, and the value of the given quality functional does not exceed $v\left(x_{0}\right)=889,8436$.

The results are obtained based on the known generalizations statement on adequacy of Petersen's lemma about matrix uncertainties [2, p. 355], [3, p. 253].

## References:

1. Aliluiko A, Ruska R. Robust stability and evaluation of the quality functional for linear control systems with matrix uncertainty. Scientific Journal of TNTU. 2020. Vol 99. No 3. P. 55-65.
2. Petersen I. A stabilization algorithm for a class of uncertain linear systems. Syst. Control Lett. 1987, Vol. 8, No. 4, P. 351-357.
3. Mazko A.G. Robust stability and evaluation of the quality functional for nonlinear control systems. Automation and Remote Control. 2015, Vol. 76, No. 2, P. 251-263.
