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EDITORIAL
“HIGH PERFORMANCE COMPUTING”

Guest Editors: Volodymyr Turchenko, Dora Blanco Heras

It’s our pleasure to welcome you to read this
thematic issue of IJC on High Performance
Computing. Most of the papers (6 from 8) presented in
this issue are the extended versions of the papers
gathered from the Special Stream on High Performance
Computing organized (first time) at the Seventh IEEE
International ~ Conference on Intelligent Data
Acquisition and Advanced Computing Systems
(IDAACS’2013), which was held in Berlin, Germany,
September 12-14, 2013.

The Conference was organized by the Research
Institute for Intelligent Computer Systems, Ternopil
National Economic University, Ternopil, Ukraine and
co-organized by the University of Applied Sciences,
Hochschule fiir Technik und Wirtschaft (HTW) Berlin,
Germany.

The IDAACS Conference series is established once
every two years as a forum for high quality papers on
state-of-the-art theory, technology and applications of
intelligent data acquisition and advanced computer
systems. These techniques and applications have
experienced a rapid expansion in recent years that has
resulted in more intelligent, sensitive, and accurate
methods of data acquisition and data processing.
Subsequently, these advances have been applied to:
manufacturing process control and inspection;
environmental and medical monitoring and
diagnostics; and intelligent information gathering and
analysis for the purpose of security and safety.

The papers selected for this thematic issue reflect
the variety of research in the area of high performance
computing.

The paper “A Parallel Template for Implementing
Filters for Biological Correlation Networks” by
Kathryn Dempsey, Vladimir Ufimstev, Sanjukta
Bhowmick and Hesham Ali deals with high
throughput biological experiments in system biology
used to analyze the state of cellular mechanisms on the
broad scale. These experiments open possibilities for
the scientific researcher to understand how multiple
components come together, and what goes wrong in
disease states. The problem is that the data returned
from these experiments is massive and heterogeneous,
and requires intuitive and clever computational
algorithms for analysis. The authors have proposed the
correlation network model as a tool for modeling and
analysis of this high throughput data and the structures
within the model to represent key players in major
cellular pathways. The authors prove that network
filtering using graph theoretic structural concepts can
reduce noise and strengthen biological signals in these

networks. However, the process of filtering biological
networks using such filters is computationally
intensive and the filtered networks remain large. The
authors develop a parallel template for these network
filters to improve runtime, and use high performance
environment to show that parallelization does not
affect the network structure or the biological function
of that structure.

The paper “Multiresolution rendering Based on
GPGPU Computing” by JuliAn Lamas-Rodriguez,
Francisco Argiiello and Dora B. Heras addresses the
problem of visualizing large volumetric datasets while
processing on the GPU. The authors state that the
design of GPU’s volume rendering solutions must deal
with the limited available memory available in a
graphic card. The authors present a system for
multiresolution volume rendering which preprocesses
the dataset dividing it into bricks and generating a
compressed version by applying different levels of
compression based on wavelets. The compressed
volume is then stored in the GPU memory. For the
later visualization process by texture mapping each
brick of the volume is decompressed and rendered with
a different resolution level depending on its distance to
the camera. This approach computes most of the tasks
in the GPU, thus minimizing the data transfers among
CPU and GPU. The results obtained in the paper are
competitive for volumes of size in the range between
64 and 256°.

Oleksandr Sudakov, Andrii Salnikov, Ievgen
Sliusar and Oleksandr Boretskyi within their paper
“Tools for Biomedical Data Archiving in Ukrainian
Grid Infrastructure” proposed, implemented and
deployed tools for data archiving and extraction within
Ukrainian National Grid for end-users’ applications in
medical imaging, non-linear dynamics and molecular
biology. The proposed tools provide the facilities to
utilize large distributed storage space in grid
infrastructures for different practical tasks including
desktop applications. The authors describe that (i) the
tools may be successfully used even when it is
impossible to setup grid middleware on client
platforms, use web browser interfaces or grid security
infrastructure authentication and (ii) the tools consist of
extensible client compatible with different software
and hardware platforms; web service for data transfer
and web service for transparent data replication on grid
storage elements.

The paper “Big Data Transfer for Tablet-Class
Machines” by Tevaganthan Veluppillai, Brandon
Ortiz and Robert E. Hiromoto presents a comparative
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study of several well-known data transfer protocols to
address the issue of big data transfer for tablet-class
machines. The analyzed protocols include standard
Java, C++ and block-data transfers protocols that use
both the Java New Input Output and the Zerocopy
libraries. The obtained experimental results are
compared against the standard Java IO and C++
stream-based file transport protocols. The motivation
for this study is the development of a client/server big
data file transport protocol for tablet-class client
machines that rely on the Java Remote Method
Invocation package for distributed computing.

The paper “Vector Clock Tracing and Model Based
Partitioning for Distributed Embedded Systems” by
Robert Hoettger, Burkhard Igel and Erik Kamsties
discusses tracking, partitioning and tracing in modern
dynamic high performance computing systems with
respect to distributed systems and proposes new
mechanisms for an advanced utilization of software in
this domain. The authors presented a specific tracking
mechanism via vector clocks for model and code
partitioning purposes and the determination of
causality relations. Then the authors introduce a tracing
approach for an effective analysis and utilization of
code and the corresponding architecture. The
combination of both approaches leads to a high degree
of parallelism and a fine-grained structure of execution
units, that further traced, supports a precise analysis of
synchronous and asynchronous system’s behavior as
well as an optimal load balancing.

The paper “Integration of Cloud Computing
Platform to Grid Infrastructure” by Vladislav
Falfushinsky, Olena Skarlat and Vadim Tulchinsky
proposes the integration approach that joints the
principles of both grid and cloud computing. The
described implementation of the cloud platform
integration into grid-infrastructure has been tested and
applied in operation within Ukrainian National Grid
which is an integrated part of EGI. The paper describes
the development of a set of commands which is
sufficient for flexible command line interaction with
the cloud platform integrated in grid. The main
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advantages of the proposed solution are: (i) quick
deployment of new or alternative software versions
within virtual organization, (ii) arbitrary mix of grid
and cloud/grid tasks on the same clusters, (iii) dialog
and on-line grid environments for immediate user’s
operations, (iv) automated data flow and distributed
storing, (v) Linux/Windows portability and (vi)
tolerance to differences in different operational
environments.

The paper “Hardware Models for Automated
Partitioning and Mapping in Multi-Core Systems using
Mathematical Algorithms” by Lukas Krawczyk and
Erik Kamsties introduces a hardware model which is
capable to support automated partitioning and mapping
in heterogeneous multi-core systems. The case study,
Freescale multi-core CPU, showed how the developed
hardware model is able to support the involved steps
and which amount of hardware-related information is
required for an automated execution. The paper
outlines a feasible implementation of these aspects as a
part of a seamless tool chain.

The paper “Spot Price Prediction for Cloud
Computing Using Neural Networks” by Volodymyr
Turchenko, Vladyslav Shultz, Iryna Turchenko,
Richard M. Wallace, Mehdi Sheikhalishahi, Jose
Luis Vazquez-Poletti and Lucio Grandinetti
describes the commodity bidding approach for cloud
computational resources on the case study of Amazon
Elastic Cloud Computing (EC2) environment. Their
analysis has shown that similar bidding methods exist
for other cloud-computing vendors as well as multi—
cloud and cluster computing brokers such as
SpotCloud. The commodity bidding for computing
resources has resulted in complex spot price models
that have ad-hoc strategies to provide demand for
excess capacity. The authors present a predictive model
for future short-term and long-term spot price
prediction using neural networks giving users a high
confidence on future prices aiding bidding on
commodity computing.

We hope the readers find the papers of this thematic
issue interesting, useful and even enjoyable as well!

Dr. Dora Blanco Heras
IR Associate Professor in the
o . Department of Electronics and

Computer Engineering
Centro Singular de
Investigacion en Tecnoloxias
da Informacion
University of Santiago de
Compostela
Riia de Jenaro de la Fuente Dominguez
Santiago de Compostela, 15782, La Coruiia, Spain
e-mail: dora.blanco@usc.es
http.//citius.usc.es/equipo/persoal-
adscrito/dora.blanco?language=en
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A PARALLEL TEMPLATE FOR IMPLEMENTING FILTERS
FOR BIOLOGICAL CORRELATION NETWORKS

Kathryn Dempsey, Vladimir Ufimtsev, Sanjukta Bhowmick, Hesham Ali

College of Information Science and Technology, University of Nebraska at Omaha
E-mail: hali@mail.unomaha.edu

Abstract: High throughput biological experiments are critical for their role in systems biology — the ability to survey
the state of cellular mechanisms on the broad scale opens possibilities for the scientific researcher to understand how
multiple components come together, and what goes wrong in disease states. However, the data returned from these
experiments is massive and heterogeneous, and requires intuitive and clever computational algorithms for analysis. The
correlation network model has been proposed as a tool for modeling and analysis of this high throughput data;
structures within the model identified by graph theory have been found to represent key players in major cellular
pathways. Previous work has found that network filtering using graph theoretic structural concepts can reduce noise and
strengthen biological signals in these networks. However, the process of filtering biological network using such filters is
computationally intensive and the filtered networks remain large. In this research, we develop a parallel template for
these network filters to improve runtime, and use this high performance environment to show that parallelization does
not affect network structure or biological function of that structure. Copyright © Research Institute for Intelligent
Computer Systems, 2013. All rights reserved.

Keywords: high performance computing, correlation networks, parallel computing, network filters, graph algorithms,

noise, biological signal.

1. INTRODUCTION

High-throughput assays are now able to take
surveys of the entire cellular landscape at once — be
it gene expression, protein function, or any other
experimentally  quantifiable = measure. The
technological capacity for examining the minutiae
on the grand scale is growing, and with it grows the
need for analyses that are both computationally
robust and informative. The inherent danger of these
experiments and their post-completion analytics lies
in the sea of information available. It is possible to
find multiple needles in the proverbial haystack, and
extremely difficult to discern which needle is the
biological candidate for causing any observed
phenotypical deviations from the norm, be that
disease, aging, or some other biological
phenomenon. Simply put, the increase in
technological capacity is accompanied, then, by an
increase in data heterogeneity, volume, and noise —
leading to biological “big data” [10].

To accommodate these specific problem areas,
the network model has been employed as an
effective tool for data visualization and analysis.
Among others, three of the major reasons why
network modeling is becoming popular include

(1) networks are easy to work with, (2) networks
retain the ability to represent relationships between
biological entities (not just the entities themselves),
and (3) well-established graph theoretic approaches
can be used on the network model for analysis.
Graph theory has been around at least since the
1700’s, ever since Leonhard Euler proposed his
solution to the Seven Bridges of Konigsberg
Problem, and ever since, methods to iterate through
and understand the graph model have been
identified, solved, and analytically improved.
Consider, then, the problem posed by high-

throughput  experimentation: large sets of
heterogeneous data contain multiple levels of
information,  (functional  ontology, pathway

information, gene to protein attributes, etc.), not all
relevant to the research query at hand. The network
model becomes an ideal tool for the analysis of these
datasets, if used cleverly, and if the model is shown
to provide useful information. Indeed, as Albert-
Laszl6 Barabasi and his team first proposed in their
sentinel 1999 work “Emergence of Scaling in
Random Networks” and then again in their 2001
follow-up “Lethality and Centrality in Protein
Networks,” networks can be used to reveal
important information about an organism on the
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cellular level. In particular, the two publications
mentioned established that the degree distribution of
many real world networks, including the protein
interaction network (PPI), followed a characteristic
power-law distribution. In a protein interaction
network, nodes are typically representative of
proteins, and edges exist between two nodes if there
is a measurable, physical interaction between two
proteins. This power-law distribution proposed
means that the network itself contains few nodes that
are highly connected to others, and many nodes that
are poorly connected. Since then, the network model
in the biological realm has exploded in popularity,
and other biological relationships to structural
properties of the model have been found, for
example, it is now established that within the PPI
model, clusters of genes, particularly cliques or
completely connected subnetworks, tend to represent
protein complexes. The typical protein complex is a
conglomeration of proteins that all interact together
to perform some function, and will not function
without “participation” of all its components. In this
way, many new proteins required for cellular
function have been identified.

Multiple network models have been proposed to
represent biological data: the PPI, the metabolic
network, the transcriptome, etc. While they all can
be similar (and more importantly, aligned and
integrated), there are inherent differences in each
model type and benchmarking of the structures
native to each model must be performed for that
model to become useful to the research of systems
biology [4]. In that regard, the correlation network,
or a network where nodes represent genes and edges
represent a correlation of expression pattern for
those genes, is a type of network that is only recently
becoming more well understood and finding
popularity. Correlation networks have been found to
mirror some of the major findings in biological
network theory; for example, structures within these
networks (hubs, clusters [8], etc.) can point to
biological functions, and the relationships between
those genes (which may previously may have been
unknown). While these networks are increasing in
popularity, the issue remains that networks are
typically large and noisy [19], corrupting the
biological signal behind observed phenotypes. As
such, multiple methods for sorting signal from noise
have been proposed. One such general method,
network filtering, has found measurable success in
reducing network size and noise while enhancing
ability to identify relevant biological functions.

Previous work has shown that filters imposed on
networks that represent gene co-expression (this co-
expression can be coincidental or causative) are an
effective means for removing “noisy” edges while
enhancing biological signal. Duraisamy et al. [19]

and Dempsey et al. [15-17] found that filters that
augment networks such that edges that exist as part
of a cycle (a path of connected nodes where the
original node in the path and the terminal node in the
path are the same) typically are found to represent
noise. A filter, for example, can remove around
25 % of relationships from the original network,
while also maintaining clusters that exist in the
original network. The filter can also reveals clusters
that were previously “hidden” or undiscoverable by
common clustering algorithms due to density or
neighborhood distortion. Dempsey et al. [17]
explored how a maximum weighted spanning tree
filter affects biological relevance of high degree or
hub nodes in the correlation network. (Biologically
relevant nodes in a correlation network can typically
be expected to represent lethal nodes [18], or nodes
that represent genes that when knocked out in vivo
results in expiration of the organism at some early
stage in development [14].) This study found that by
using a spanning tree filter, it is possible to more
accurately identify biologically relevant hub nodes
in the correlation network due to the removal of
coincidental edges. Further, a “hybrid” filter was
created that incorporated a spanning tree and a
chordal filter by adding edges back into the network.
The focus of the study then became the examination
of how the biological relevance of hub nodes is
further enhanced (i.e., hub nodes from the original
network gain more edges back, making them easier
to identify as hub nodes). This filter incorporated
edge re-addition in two steps, one where edges were
added such that chordality is maintained, and a
second where edges were added with a less strict
condition — chordality is preferred, but not some
larger cycles are allowed, if they are part of clusters.
The best parameters from this study revealed that
adding in edges that did not necessarily maintain
chordality (but not adding in all edges) was best able
to identify biologically relevant hub nodes. In short,
we have three major versions of the network that we
are able to test for biological relevance; these
variations are shown in Fig. 1.

“Hub” nodes in correlation networks can be
disassortative or assortative [27], the former
indicating that its neighbors are poorly connected
and the latter indicating that the hub is very well
connected; in such cases the assortative hub can be
found to exist within clusters as a member of a dense
community. Results from Dempsey et al. [17] show
that while the aforementioned maximum spanning
tree (MAXST) filter is able to identify lethal hub
nodes better than the original network (according to
degree), the edge-addition methods are both better
than the spanning tree only approach. We speculate
that this is because the MAXST approach only
identifies disassortative nodes within the network;
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adding edges back in allows for the assortative hubs,
which by definition require more edges between
neighbors, makes identification of these
hubs possible.

Theoretically speaking, a biological network is
self-organizing and as contains multiple built-in
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redundancies to ensure survival in structural
breakdown; this characteristic of self-organizing
systems [1] is consistent with the need for clusters in
a correlation network —it reflects the inherent need
for a set of genes to be co-expressed and working in
concert toward some discrete function.
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Fig. 1 — An overview flowchart of this approach.

In this study, we further examine the applicability
of this hybrid filter by examining its effectiveness in
enhancing clusters in correlation networks. Previous
studies on chordal filters by [15-17] revealed that a
chordal filter is able to maintain current clusters
from the original network and identify new clusters
that were previously hidden. Previous studies on the
hybrid chordal filter have only examined its
effectiveness in identifying biologically relevant hub
nodes, not clusters. Therefore, in this study we
implement and apply a parallel filtering approach to
networks generated from an aging mouse gene
expression study to show its effectiveness in
identifying clusters and the speedup that results. An
overview of our method is shown in Fig. 1. Previous
work in this area of biological correlation network
filters used relatively small networks, and as such it
is crucial to show that these filters are able to scale
and maintain the same result.

2. HYPOTHESIS

In this study, we further examine the applicability
of the previously studied filters by examining their
effectiveness in enhancing clusters and hubs in
correlation networks. Gene expression correlation
networks tend to get large when analyzed on the
whole-genome scale, so it is important to be able to
parallelize the process and also reduce runtime of
the clustering method (typically the longest step in
the analytic pipeline), while still being able to
identify relevant biological clusters. From our
previous results using network filters, we have
observed the following phenomena:

e Chordal filters maintain network clusters [15]

e Spanning tree filters maintain lethal hub
nodes [16]

e The hybrid filter maintains lethal hub nodes
best when edges are added back into the
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network  without
chordality [17]

e Almost all the chordal-like edges are added to
the spanning tree in 1 to 2 iterations [8]

Based on these observations, we can propose our
hypothesis for how well the hybrid filter is able to
identify clusters, in addition to the rather
straightforward hypothesis that the process of
filtering networks should reduce their density and in
turn reduce the search space and the computational
time of extracting information from the networks.

necessarily maintaining

o  HOa: There are significant independent tasks
associated with graph-theoretic network
filtering which implies that Parallelization of
these filters results in decreased runtimes,
indirectly leading to faster analysis.

e HOb: Filtered networks retain their relevant
biological structures, including hubs and
clusters.

e HOc: The changes due to parallelization do
not significantly effect the utility of the filters.

3. METHODS

3.1. NETWORK CREATION

Networks are created by using data from NCBI’s
Gene Expression Omnibus, which houses data from
microarray, RNA-seq, and other high-throughput
assays [2]. The data was taken from GSE8150 [5],
which uses brain tissue from mice at ages 5 months
and 30 months. Three datasets total resulted from the
GSES8150 experiment:

1. Untreated mice at 5 months (YMBC)

2. Treated with a-tocopherol, 30 months
(MOBATOP)

3. Treated with y-tocopherol, 30 months
(MOBAGTOP)

Briefly, mouse-aging networks were created
using the pairwise correlation coefficient calculated
for each pair of genes by measuring correlation of
pattern expression. Genes or gene products are
represented in the network as nodes. Correlation can
fall between -1.00 and 1.00, and correlations passing
hypothesis testing using the Student’s T-test (p-val <
0.0005) are used to draw an edge between the
representative nodes, with the weight of the edge set
to the actual correlation score.

3.2. TEMPLATE FOR FILTERING
ALGORITHMS

The primary goal of filtering algorithms used in
our experiments is to preserve the structural
properties of the networks that highlight the
corresponding system properties. Specifically, we

use maximum spanning tree (MAXST) filters to
identify hubs, which represent lethal nodes and
chordal graph based (CHD) filters to extract
important communities in the networks. Both these
filters, as well other structural sampling methods
such as random walk, forest fire, breadth first search
(BES), etc. are based on network traversal. As part
of our implementation we propose a template that
can be easily modified for all such graph traversal-
based sampling algorithms.

To create such a template, we observe that all
graph traversal algorithms follow this pattern;

(i) Select a start vertex

(i) Identify its neighboring nodes that have not
been visited

(iii) Put a priority value to the neighboring nodes.

For example, the priority for BFS is the distance
from the root; for MAXST using Prim’s method [27]
it is the neighbor with the highest weight; for CHD
using Dearing’s Algorithm [28] it is the neighbor
with the most connections to the filter graph

(iv) Add the neighboring nodes to a maximum
priority queue. Mark them as visited.

(v) Remove the top node from the priority queue

(vi) Add this node to the filtered network, if it
maintains certain structural properties

For BFS and MAXST the network should remain
acyclic. For CHD the size of a cycle cannot be more
than three.

(vii) This new node becomes the start vertex.

(viii) The process is continued until all the
vertices have been visited.

Biological networks can often have disconnected
components (generally, one giant component and
many small ones). This template for graph traversal
can also be modified for disconnected components
by adding a check to ensure that when a traversal
ends, i.e. there are no more new vertices to add to
the priority queue, there are also no unvisited
vertices remaining. If an unvisited vertex is found,
then it belongs to a new component, and it is
selected as the next start node. Note that the only
change required to implement a new traversal
method is at steps (iii) and (vi). Thus this template
facilitates easy modification and experimentation of
new traversal techniques.

3.3. PARALLEL FILTERING ISSUES AND
SOLUTIONS

We now discuss a parallel implementation for the
traversal template. The template by itself does not
lend easily to parallelization since the start nodes are
selected sequentially from the priority queue one by
one. Although BFS has a wave front like expansion
of neighbors from which traversal can be done in
parallel, this is a specialized case and does not hold
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for CHD or MAXST. Another area of parallelization
is when searching for the neighbors. However most
biological networks are scale-free and therefore
most of the nodes have low degree. Thus
parallelizing the neighbors search will not
significantly affect the running time.

We therefore decided to partition the network
across different processing units (in this case,
threads), execute the traversal for each partition
separately and then combine the filters obtained
from each partition. One issue in this method is that
although the individual filters maintain the specified
traversal properties, it is more difficult to ensure that
the combined filter will also do so. In fact,
attempting to maintain the BFS or MAXST tree or a
chordal graph across the combined filters, often
results in the combination process becoming
sequential and extremely time consuming. As a
compromise we decided to opt for quasi-filters
instead of exact filters. This helps reduce the time
and makes the combination process parallel as well.
Moreover, the quasi-filters maintain most if not all
of the properties of the exact filters and therefore do
not affect the analysis results significantly.

The combination process for BFS and MAXST is
as follows; add exactly one edge between partitions
Pi and Pi+1, and no edge between the first and the
last partition. It is easy to see that the resulting
quasi-filter is still a tree. However, for BFS some of
the nodes may not be in the shortest path from the
root, as would be the case for an exact BFS tree and
for MAXST the edges connecting two partitions
may not be the ones with the maximum weight. In
the combination process for CHD one node from
partition Pi is connected to all its neighbors in Pi+1.
If the neighbors are connected then the chordal
graph property is maintained, otherwise we will end
up with a few cycles of length greater than three. So
long as the percentage of such larger cycle is
significantly smaller than the number of triangles the
benefits of the chordal graph are maintained. Note
that since Pi connects to Pi+1 and Pi+1 connects to
Pi+2, each of the combination steps can be done in
parallel by each partition (except for the last
partition which does not combine). This increases
the scalability of the filter.

3.4. CLUSTERING

Clustering was performed using MGClus [5]
under default parameters. MGClus aims to
identifying clusters that exist in large biological
networks and has been shown to perform well in
PPI’s, whose clusters tend to be dense and range
from very small (5 nodes) to large. In particular,
MGClus runs very quickly at the command line
which is why it was chosen for these very large
biological networks.

3.5. DESCRIPTION OF EXPERIMENTS

Experiments were performed in
quadruplicate for each of the three networks
(YMBC, MOBATOP, MOBAGTOP) to highlight
the consistency of our approach. There are
several parameters to be measured within this
set of research. These major parameters are:

e Filter
o Node Selection
o Filter Iteration
o Speedup

The first measure that we will address is the filter
itself — what type of filter is applied, and how many
iterations of edges are added back in. Two sub-
parameters of the filter itself are node selection —
how nodes used to filter the network is selected. The
node selection process for the initial tree can use a
breadth-first-search (BFS) or maximum weighted
spanning tree (MAXST), or a chordal filter (CHD).
The chordal filter itself is not a node selection
method per se, but it filters the network such that the
final network model is a chordal subgraph of the
original. The second sub-parameter of the filter is
the augmentation of the network, which determines
how edges are added back to the tree. Edges are
added back only if they are present in the original
network, by adding them between nodes at distance-
2 in the tree. This operation creates triangles, which
is required for chordal graphs. The constraints can
be tight such that only chordal graphs are created or
loose (quasi) where some larger cycles are allowed.
This parameter also can be iterated over many times,
or none. In this paper, we use iterations of 0-3,
meaning that at iteration 0, no augmentation is
performed, at 1, only one round of augmentation is
performed, and at 2, two rounds are performed, and
so on. In a recent paper by West et al., it was found
that the filtered network rarely changes its inherent
base structure after the first few iterations, so
extension beyond 3 iterations should not be required.
Finally, we compare each of these parameterizations
sequentially and in parallel.

4. EXPERIMENTAL RESULTS

The goal of this study is to establish benchmarks
for the time required to build and analyze networks,
and establish how changes in parameters affects this
runtime in sequential and parallel environments. The
structure of our experiments and research in this
manuscript follows as thus: the effect of filter on
network size (3.1), the effect of filters on cluster
count and overlap with original clusters (3.2), how
scalable are the parallelizations (3.3.). Biological
impact of these results is described using hubs (3.4.)
and clusters (3.5).
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4.1. FILTERED NETWORK SIZE

One of the first measures that can indicate the
power of a filter is edge density. For each network,
we measure the number of nodes present after
filtering (n) and the number of edges present after
filtering (e). If the network was completely
connected, we know the total number of edges
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Fig. 2 — Edge Density Results for Sequential Runs of each network for each filter. Edge density is represented on
the y-axis, as Total Edges/ total Possible Edges *100. The x-axis represents the network, filter, and iteration used.

Typically, correlation networks tend to be sparse,
and have low levels of edge density, but this does
not necessarily mean the network is small or easily
manageable. For example, the ORIG YMBC
network (shown at bottom in green, Fig. 2), has an
edge density of 0.11 %, meaning that the number of
edges in the represents less than 1 % of the possible
edges given the number of nodes. However, this low
number is deceiving. The network has 43,021 nodes
and 1,050,293 edges, which is too large for graphic

visualization even with the most current network
GUISs; a network of this size must be handled at the
command line. This task might be challenging for a
person not primarily trained as a bioinformatician or
computer scientist.

It is clear from each of the three networks in
Fig. 2 (MOBAGTOP at top in blue, MOBATOP at
middle in red, and YMBC at bottom in green) that
the MAXST filter, at every increasing iteration,
reduces edge density drastically from the network.
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This would be expected, as the filter is more
stringent — originally it creates a tree which by
nature has no cycles. The CHD filter, in which edges
are added to increase the neighborhood connectivity
where clusters exist, far better maintains original
edge density with every increasing iteration,
particularly at i = 3. The only iteration of CHD that
is similar in edge density to the MAXST filter is for
i=0; after this, we see a large jump for every filter
and every network from =/ and on. Whether or not
this is beneficial will be revealed in the biological
and clustering analysis.

4.2. CLUSTER COUNT AND OVERLAP

The clusters identified by MGClus are based on
shared neighbors, and it should be noted that any
clustering algorithm will perform differently based
on its core techniques. MGClus was designed for

16000

large biological networks and was shown to perform
well in random networks (does not identify noise as
signal) and well in PPIs (identifies dense clusters
based on shared neighborhoods and neighborhood
topology). The results of the clusters in terms of
cluster size are shown in Fig. 3. It is clear that in
terms of clustering consistency, the CHD filter far
outperforms MAXST; in fact, the MAXST filters
behave in an unexpected fashion in that the number
of clusters per network actually decreases with
addition of edges. One might speculate that this
occurs due to the fact that adding edges back in will
create  clusters where there were dense
neighborhoods in the original network, creating
actual neighborhoods instead of small groups of
poorly connected nodes (resulting in the initial high
number of clusters). Therefore, the smaller clusters
in the earlier trees get merged.
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Fig. 3 — Cluster Count Results for Sequential Runs of each network for each filter. Clusters found per network is
represented on the y-axis. The x-axis represents the network, filter, and iteration used.
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One of the methods used to compare how well
clusters in original networks are also identified in
filtered networks is through cluster overlap. To
determine cluster overlap, a list of each cluster in the
original network and a list of each cluster in the
filtered network was compared. The comparison or
score (Cluster Overlap Score) was determined by
checking the node overlap of clusters. For each
cluster in original network G, each node was placed
in a hash Hp Then for each cluster in the filtered
network Gr, each node was placed in a hash Hr The
two hashes are then compared, and if a node occurs
in both clusters, it is scored as a match. The final
match score for each cluster comparison is defined
as the number of matches divided by the total
number of nodes in the original cluster. Each
original cluster is compared to each filtered cluster,
and the Maxscore is defined as the highest final
match score for that original cluster, or the overlap
score of the original cluster compared and the
highest overlapping cluster in the filtered network
according to their node comparison. Note that the
higher the Maxscorethe better. Maxscores with a
value greater than 1 indicate that multiple clusters
within the filtered network overlapped with the
original cluster, and overlaps are counted if the
Maxscore of each of those clusters is equal. A
Maxscore with a value greater than 1 is considered a
sign of robustness of the cluster and the filter.

The Maxscores of each network at RUNI are
shown in ranked order (lowest to highest) in Fig. 3.
(Runs 2-4 are not shown as the filtered networks are
extremely similar to RUN1). In Fig. 3, it is evident
that there is a wide range of Maxscores for each
original cluster, but it is quite evident that the CHD
filters (at each iteration 0,1,2, and 3) are better
performers than the MAXST filters in terms of
finding clusters that are robust and having good
overlap.

4.3. PARALLEL RESULTS AND
SCALABILITY

For each of the two filters (CHDand MAXST)
the scalability results are shown in Fig. 4. The
machine used was a 64-bit with two physical Quad-
Core AMD Opteron Processors (2394.112 Mhz
CPU) with32 GB of RAM per processor. The
number of threads used ranges from 1 to 16
(specifically, the data points are for 1,2,4,8, and 16
threads) and the run time is just for the parallel
portion of the algorithm not for the I/O of reading in
the file and writing out the results.

After 16 threads, in each network, the partition
becomes too small for effective parallelization and
the overhead from the communication and
combining all of the parts back together dominates
the runtime.

Scalability: CHD Model
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Fig. 4 — Scalability Results for the three networks with no iterations per CHD filter.

For each model there are 3 charts (MOBATOP,
MOBAGTOP, and YMBC) and each chart shows
the runtimes for different numbers of threads for

each version of the network. For example, for the
CHD model the chart for MOBATOP contains

runtimes for MOBATOP_ RUNI,
MOBATOP RUN2, MOBATOP RUN3, and
MOBATOP_RUN4. Table lgives the number of
vertices and edges in each network used.

Table 1. Sizes of networks tested.

Network

MOBATOP

MOBAGTOP

YMBC

Vertices | Edges
44577 | 2026962
44564 | 1987326
44875 | 2100586

Chordal Model. As is seen in Fig. 4, the CHD
model performs well on all variants of each network.

Notice that the shape of each of the curves is close to
perfect scaling. When graphed using a log-log plot,
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the curve actually becomes a straight line (with
slope close to 1) meaning that when the number of
threads is doubled, the runtime is cut in half. In fact,
when scaling from 1 thread to 2 threads, the runtime
is reduced by more than one half in every case. The
same is true when comparing the runtimes for 2 and
4 threads. However, for 8 and 16 threads the
runtimes do not get reduced as much and after 16
threads they begin to increase indicating that there is
no benefit to increasing the number of threads after
16. MAXSTModel. The MAXST model (as shown in
Fig. 5) performs the best out of the two models on
all variants of each network. Notice that the shape of
each of the curves is closer to perfect scaling than

for the CHD model. When graphed using a log-log
plot, the curve becomes a straight line (with slope
greater than 1) meaning that when the number of
threads is doubled, the runtime is cut by more than
half. When doubling the number of threads starting
from 1 all the way up to 16 threads the factor by
which the runtime is reduced is more or less the
same (around 60 %) i.e. runtime is cut down by the
same proportion each time the number of threads are
doubled (up to 16).

However, as was seen in the CHD model, after
16 threads the runtimes increase indicating that for
networks of this size, it makes no sense to increase
the number of threads past 16.

Scalability: MAXST Model
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Fig. 5 — Scalability Results for the three networks with no iterations per MAXST filter.

4.4. BIOLOGICAL RESULTS — CLUSTERS

Due to the large amount of networks and
subsequently, clusters generated, (over 777,000),
biological significance of each will not be
performed. Previous studies have shown that the
chordal filters tend to maintain and/or enhance the
biological function of found clusters if such a
function exists. To highlight this, one example of
cluster overlap is taken from the parallel code:

immune system process

C

cell adhesion

cluster 2 from RUN4 of the YMBC original network
was found to have a 61 % overlap with cluster 4037
from RUN4 of the YMBC CHD-1 filtered network.
Between the two clusters, 20 nodes were found to
overlap and 39 were unique to either the original or
filtered network. A list of nodes found in both
clusters is shown in Table 2.

The Gene Ontology profiles for both sampled
clusters are shown in Fig. 6. .

cell
communication

cellular process

cell cycle
‘ localization
transport
§ apoptosis
metabolic 0
process ”
system process

response to stimulus

developmental process
ORIGINAL NETWORK CLUSTER

Fig. 6 (a). Gene Ontology profiles (Biological Process tree) for the sampled clusters from the original network.
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FILTERED NETWORK CLUSTER
Fig. 6 (b). Gene Ontology profiles (Biological Process tree) for the sampled clusters from the filtered network.

Table 2. Node IDs, MGI IDs, and Gene Symbols for Original and Filter sample clusters
from the YMBC RUN4 networks.

ORIGINAL CLUSTER FILTERED CLUSTER

Input ID Symbol Input D Symbol
1443866 at MGI:2442106 |Lrtml 1429534 a at |[MGI:1923864 |Immt
1451208 at MGI:2385071 |Etfl 1443866 at MGI:2442106 |Lrtml
1460331 at MGI:1915309 |Tm9sf2 1453367 a at |MGI:1923442 |Abhd12
1422621 at MGI:894323  |Ranbp2 1422621 at MGI:894323  |Ranbp2
1453367 a at |MGI:1923442 |Abhd12 1457846 at MGI:1917052 |Cox11
1438511 a at |MGIL:1913464 |Rgce 1416514 a at |[MGI:1352745 |Fscnl
1456035 _at MGI:2685230 |Nxf3 1451655 _at MGI:2672859 |Slfn8
1435569 at MGI:2143561 |D630029K05Rik [1424360 at MGI:2384576 |Tti2
1427672 a at |MGI:1095419 |Kdmo6a 1435569 at MGI:2143561 |D630029K05Rik
1429534 a at |MGI:1923864 |Immt 1421233 at MGI:1201409 |Pknox1
1417086 at MGI:109520 |Pafah1bl 1430307 a at |[MGI:97043 Mel
1434508 at MGI:1917343 |Ube2ql 1460331 at MGI:1915309 |Tm9sf2
1437086 _at MGI:96919 Ascll 1451208 at MGI:2385071 |Etfl
1421815 at MGI:2145369 |Epdrl 1417086 at MGI:109520 |Pafah1bl
1453214 at MGI:1921738 |Lrrel5 1450080 at MGI:1920115 |Cxxlc
1421874 a at |MGI:1928138 |Mrps23 1460726 _at MGI:87948 Adss
1451655 _at MGI:2672859 |Slfn8 1419703 at MGI:1858212 |Col5a3
1457846 at MGI:1917052 |Cox11 1422409 at MGI:104877 |Hes3
1416514 a at |MGI:1352745 |Fscnl 1421878 at MGI:1346862 |Mapk9
1424360 at MGI:2384576 |Tti2

1420598 x at |MGI:99592 Defa-rs2

1418751 at MGI:1889342 |Sitl

1421233 at MGI:1201409 |Pknox1

1422409 at MGI:104877  |Hes3

1422699 at MGI:87998 Alox12

1421878 at MGI:1346862 |Mapk9

While there are a few differences in the cluster
profiles (apoptosis present in the Original cluster
only, and three terms — generation of precursor
metabolites, homeostatic process, and cellular
component organization — are present in the Filtered
cluster only) — the two clusters largely have a similar
ontological profile, even considering that the filtered
cluster has 7 less genes than the original and out of

both clusters, only 20 genes overlap. (The Original
cluster has 26 genes and the Filtered has 19). This
highlights how we are able to maintain the
biological integrity of the original network structure
while reducing network size, cluster size, and noise.
A level of discovery is even added with the finding
of three new possible functions performed by the
noted gene cluster.

294



Kathryn Dempsey, Viadimir Ufimtsev, Sanjukta Bhowmick, Hesham Ali / International Journal of Computing, 12(4) 2013, 285-297

An example of a cluster with low overlap to an
original cluster can be found in the YMBC network
using the CHD-1 filter. The first cluster found in this
network contains 42 genes but has just 30 % overlap
with any original clusters, meaning that this cluster
is one that has been “found” or revealed with the
removal of noise. This cluster was analyzed for
functional enrichment using the GeneTrail [26] tool
using default parameters. The cluster was found
enriched in three main biological processes
(P-val<0.05): cell development, cellular component
morphogenesis, and cell morphogenesis. The Gene
Ontology subtree for these functions is presented in
Fig. 7 below. This is just one example of how a
cluster that is not found in the original network can
be discovered in the filtered network, or how noise
removal can strengthen biological signal.

G
1

@og&cal_pro@
~—
g
allular component /anammica!structurede@ m\lulardeve\opment@
/
L 4/\ _—
\@m/micalstmcture morphogenes\s// cell differentiation > /
/
o

Fig. 7 — TheGene Ontology tree generated by
GeneTrail Express [28] after enrichment of the second
cluster of the filtered CHD-1 YMBC network.

5. DISCUSSION

In this study, we have examined how well our
hybrid filter identifies dense clusters with high-
degree nodes and biologically relevant nodes in
correlation networks. It has been shown previously
that network filters can remove noise from
biological networks. The filter presented here can
identify chordal or maximum spanning tree
subgraphs, and also has the ability to add edges from
the original network back in to bias that network
toward dense communities. The speedup curves of
the parallelized filter highlights the necessity of this
parallelization, proving our original hypotheses,
HOa, that there are significant independent tasks
associated with graph-theoretic network filtering
which implies that Parallelization of these filters
results in decreased runtimes, indirectly leading to
faster analysis. Secondly, the networks were shown
to be consistent in terms of filter edge removal and
cluster identification across multiple networks and

multiple runs, proving our third hypothesis, HOc:
That the changes due to parallelization do not
significantly effect the utility of the filters. Finally,
we use examples of biological relevance to highlight
our second hypothesis, showing that biological
structures and their meanings are not affected by the
parallelization of the filters. As the amount of
information that needs to be incorporated into the
network model grows, this parallel template can be
trusted to improve computational runtimes for a
faster and robust analysis.
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Abstract: The problem of visualizing large volumetric datasets is appealing for computation on the GPU. Nevertheless,
the design of GPU volume rendering solutions must deal with the limited available memory in a graphics card. In this
work, we present a system for multiresolution volume rendering which preprocesses the dataset dividing it into bricks
and generating a compressed version by applying different levels of compression based on wavelets. The compressed
volume is then stored in the GPU memory. For the later visualization process by texture mapping each brick of the
volume is decompressed and rendered with a different resolution level depending on its distance to the camera. This
approach computes most of the tasks in the GPU, thus minimizing the data transfers among CPU and GPU. We obtain
competitive results for volumes of size in the range between 64° and 256°. Copyright © Research Institute for

Intelligent Computer Systems, 2013. All rights reserved.

Keywords: compressed volume rendering, texture mapping, multiresolution rendering, wavelet transform, quantization,

CUDA, OpenGL.

1. INTRODUCTION

The evolution from graphics-specific accelerators
to programmable vector processors has made of
GPUs a standard platform for rendering volumetric
datasets. However, recent years have witnessed
significant improvements in the data acquisition
methods, and, as a result, the size of datasets has
increased. This poses a challenge given the limited
memory resources available in current graphics
hardware, and although each new GPU generation
expands its memory capacity, the current trend
shows that this problem will continue to exist in the
future [1]. In this context, compression stands as an
effective solution for processing increasingly larger
datasets in the GPU. The compression is usually
computed on a previously decomposed version of
the volume.

As it is usual in the context of volume rendering,
the volume is initially decomposed into a set of non-
overlapping blocks, usually called bricks, so a single
brick fits into the memory of the GPU. Bricks are
compressed with multiple levels of compression.
When the visualization process begins the bricks are
loaded and rendered one at a time. In our
implementation we use a single OpenGL 3D texture
buffer to store the contents of a brick of data, and
this buffer is reused every time a new brick is
processed. The final visualization is achieved
through texture mapping (also known as texture

slicing) [9], which, along with ray casting, is one of
the most popular methods to render volume data.

In this rendering technique, the 3D texture is
mapped onto a proxy geometry composed of planar
polygons that constitute camera-oriented translucent
slices, i.e., the volumetric object is cut into slices
that are rendered always parallel to the image plane
[10, 11].

Several techniques of compressed volume
rendering that can be found in the literature rely on
storing the compressed volume data in a memory
space different from the GPU (as the CPU main
memory or a hard disk) [12, 13]. These out of-core
techniques require transfer decompressed portions of
the volume to the GPU memory before they can be
rendered. Their performance is limited, at least, by
the transfer rate of the PCI bus (e.g., 8 GB/s for
PCle 2.0).

A wide variety of approaches have been
developed to build a compact representation of the
data. In volume rendering, these solutions are
usually asymmetric, i.e., the original dataset is
decomposed and compressed in an off-line process
which is executed only once without execution time
constraints, while the decompression and
visualization processes are executed in real time.
Common methods for data compression may involve
applying  wavelet transforms [2,3], vector
quantization [4-6], or a multiscale tensor
approximation [7]. For a survey on compressed
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GPU-based volume rendering, we refer the reader
to [8].

In this work, we have used a wavelet transform to
compress the volume into a compact hierarchical
form. We have selected the Haar wavelet, as it is
computationally simple and very effective for fast
reconstruction. Most of the coefficients of this
transform are computed as sample-to-sample
differences of the original volume data. This means
that these coefficients will be of a small magnitude,
or even zero, and therefore can be neglected without
any significant loss of information. Our encoding
scheme, a generalization of [2], benefits from this
characteristic to obtain a more compact format of the
compressed volume.

In this paper, we present a solution that stores the
volume in the GPU memory in its compressed form.
We couple decompression and rendering by dividing
the volume in bricks which are processed one at a
time, benefiting from the higher transfer rate of the
GPU memory bus (192.4 GB/s in an NVIDIA
GTX 580). Additionally, as our encoding scheme
uses a wavelet transform, it supports decompressing
bricks at different levels of resolution. The final
rendering is executed using the texture mapping
technique. We have obtained high speedups for the
CUDA implementation of the steps of the algorithm.
The complete system performs at an interactive and
stable frame rate independent of the viewport size,
while keeping a good compression ratio with a high
visualization quality. This work is an extension
of [9] where the rendering system was presented.

The rest of this paper is organized as follows.
Section 2 describes the GPU architecture. Section 3
examines the design of our GPU-based system for
compressed volume rendering. Section 4 analyzes
the experimental results and compares our
implementation to other similar works. Finally,
Section 5 concludes discussing the main
contributions and future work.

2. GPU ARCHITECTURE

GPUs are programmable architectures consisting
of several many-core processors capable of running
hundreds of thousands of threads concurrently. In
this section we present a brief overview on the Fermi
GPU architecture [15], which we have used
to test our implementation of a GPU volume-
rendering system.

NVIDIA’s CUDA architecture [16] consists of a
huge number of cores (or streaming processors,
SPs), grouped into a set of streaming
multiprocessors (SMs), with a very high memory
bandwidth. As an example of this architecture, the
GeForce GTX 580 has 16 SMs with 32 SPs each,
resulting in 512 cores.

The programming model encourages a fine-
grained level of parallelism within the single
program multiple data (SPMD) paradigm [17]. A
CUDA program (called kernel) is run by a grid of
threads, which are grouped in thread blocks.
Programmers can configure the size and distribution
of the grid to their convenience and according to the
requirements of the tasks to compute.

The architecture features several memory spaces.
The global memory and texture memory spaces are
accessible by the GPU, and also by the CPU through
the PCI bus. Other memory spaces are located inside
the chip, and provide a much lower latency: a read-
only constant memory, a shared memory (which is
private for each SM), a texture cache and, finally, a
two-level cache that is used to speed up accesses to
the global memory.

Coordination between threads within a kernel is
achieved  through  synchronization  barriers.
However, as thread blocks run independently from
all others, their scope is limited to the threads within
the thread block.

3. THE RENDERING SYSTEM

Our solution involves two different stages:
compression and visualization. The compression is
executed on the CPU to preprocess the data
generating the compressed volume from the
original dataset.

The visualization stage runs on the GPU, and
shows on the screen the reconstructed volume with
different resolution levels depending on the distance
to the camera. The visualization stage consists of
two steps: a reconstruction of the volume followed
by the rendering itself. This process is performed
brick by brick with the required level of
decompression for each brick.

Fig. 1 shows the different data structures used in
this implementation. The original volume data is
divided into bricks and each brick is divided into
blocks of 16 x 16 x 16 elements. In the example
shown in the figure a brick contains 2 x 2 x 2
blocks. Each block is divided into cells, each cell
containing 4 x 4 x 4 elements. Finally, a chunk
contains a group of 2 x 2 x 2 elements.

e

Block data Cell dataChunk data
16x16x16  4x4x4 2x2x2
elements elements elements

Brick data
2x2x2 blocks

Volume data

Fig. 1 — Data structures used in the rendering system.

Our compression algorithm requires reorganizing
the volume data into smaller structures called
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blocks, cells and chunks. For example, the wavelet
transform that is applied to blocks processes data in
a chunk basis. During the visualization stage, the
volume is considered to be divided in bricks, which
are processed individually.

The different steps of the initial compression and
the later visualization stages will be described in the
next subsections.

3.1. Compression

The compression stage is the preprocessing that
takes place before the visualization process. Fig. 2
shows the different steps performed during this
stage, and the data generated at each step. First, a
wavelet transform is applied to the volumetric data.
Afterwards, the wavelet coefficients are quantized to
restrict the values to a limited number of
possibilities. The quantization step scales down the
coefficients obtained by the wavelet transform,
nullifying those with a close-to-zero value, so losing
information. Finally, the encoding step generates the
compressed volume data, which is stored later in the
hard disk. All these steps are executed on the CPU.

Block of
i 16° elements ;
Wavelet
transform i
x4 Encoding
—-— — .

Transformed
volume data

Wavelet
coefficients

Quantization

Original
volume data

Compressed
volume data

Fig. 2 — Compression steps over the original volume.

The wavelet transform step applies a wavelet-
transform operator to blocks of 16 x 16 x 16
elements using a Haar filter. Our CPU
implementation is similar to other solutions that can
be found in the literature [2]. The transform is
recursively applied to each block, generating bands
of coefficients.

Fig. 3 shows how the wavelet transform
generates the coefficients for a 16 x 16 x 16 block,
which are then grouped in eight bands. These bands
are labeled from LLL to HHH.

The LLL band contains the average coefficients,
and the detail coefficients are stored in the
remaining bands. The transform is recursively
applied to the LLL band, generating new levels
of subbands until we get four levels
of transform. These levels are the basis of the
multiresolution system.

To avoid any data loss during the wavelet
application the coefficients are preserved without
modifications. This means that the magnitude of the
coefficients (specially the low-frequency ones)

grows each time the transform is applied. This
approach increases the storage requirements but
guarantees that the only source of data loss is in the
later quantization step.

LLH -

Wavelet &~~~
transform )" ; HLL, HLL

x4 LHL, HHL, 1

LHL, HHL |

"HHH,

Fig. 3 — The result of applying a 4-level wavelet
transform to a 16 X 16 X 16 block of data.

Quantization is a lossy compression technique
that reduces the range of the values of the
compressed dataset [18]. In our implementation we
have chosen a scalar quantization solution with
fixed-rate coding that removes the least significant
bits of the coefficients obtained from the previous
wavelet transform. This quantization reduces the
magnitude of the coefficients, and nullifies those
with a close-to-zero value. The quantization level
must be decided according to the compression
quality, where not only the compression ratio, but
also the signal to noise ratio are considered.

The encoding step converts the resulting
volumetric data from the wavelet-transform and
quantization steps into its final compressed form
following a compromise between good compression
ratio and fast random access.

Fig. 4 shows the main data structures used in this
step and their meaning. The cell-tag table array
stores a cell-tag table for each block in the volume.
A cell-tag table contains two-byte tags labeling each
cell in a block. The most significant byte stores the
width in bytes of the coefficients in the cell (or zero
for a null cell), and the less significant byte stores
the index of the significance map for the cell. The
significance map array contains a bitmap for each
non-null cell in the volume. This bitmap is used to
flag coefficients in the cells as zero or nonzero.
Although it has not been represented in Fig. 4, it is
also necessary to store an offset value for each cell.
It is stored in 8 bytes (long integer) and contains the
corresponding non-null coefficient array.

Finally, four arrays store all the non-null
coefficients from the transformed volume data. Each
coefficient is stored in an array depending on its
width in bytes. This encoding supports coefficients
of up to four bytes.

Our encoding solution increases the flexibility of
the implementation presented in [2], which was
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limited to 4 x 4 x 4-cell blocks. Two-byte cell tags
enable using bigger blocks, so more resolution levels
could be supported, as the maximum number or
recursive wavelet transforms that can be applied is
restricted by the size of the block.

A 16x16x16 block
decomposed in: -~
4x4x4 cells ! Cell-tag tables Significance-map arrays

| - Number of bytes used by » Position of the significance

Compressed volume

ol112]3 : the coefficients in tEe cell | map for each non-null cell
4/5/6|7 : T =
8|9 1o/t 1 O 11 0
{l12[13[14]15 P/ 12) 1
| e
I 16x16x16 V20 0 1 2
| elements / A A A
\ — 310 - | - !
\\ 4x4x4 e !
1 2 s

Arrays of non-null coefficients

S— SR T
» two-byte
three—byte’ [ [l [T -

four-byte

elements 4 K
Vi
\- Cellindex A// E

Fig. 4 — Structure of the encoded data.

3.2. Visualization

The visualization stage is responsible of
reconstructing the compressed volume on the GPU
(decoding and inverse wavelet transform
computation) and rendering it on the screen. Fig. 5
shows the different steps that take place in this stage.
The volume is processed brick by brick.

First, a brick is selected from the compressed
volume and reconstructed at a specific level of
resolution. This reconstruction involves the steps of
decoding and inverse transform, which have been
implemented in CUDA kernels, and hence, run on
the GPU. The restored brick data are stored in an
OpenGL Pixel Buffer Object (PBO), and then
copied into a texture buffer to be mapped onto a
proxy geometry. These operations including the final
rasterization are implemented using the OpenGL
API. The process continues with another brick until
the complete volume has been rendered.

Wavelet

; coefficients
Decode a brick Inverse transform —=—x
(CUDA) (CUDA)
 e— >
Compressed Decoded Restored brick
volume data brick data stored in a PBO
Copy PBO contents I
Sii into a texture buffer
ice (OpenGL)
The cycle is repeated )
until the complete Rendering —
volume is rendered (OpenGL)
<
Proxy OpenGL
geometry 3D texture

Fig. 5 — Visualization system for decompressing and
rendering the volume data.

The visualization process is performed brick by
brick. In each frame, the CPU decides in which
order bricks should be reconstructed according to the
position of the camera. A back-to-front order is
maintained to guarantee a correct composition of
the bricks.

For each brick, depending on its distance to the
camera, the CPU chooses a resolution level. Bricks
that are close to the camera are rendered at the
highest level. Bricks that are far from the camera do
not contribute to the final result as much as the
closer ones, so in order to speed up the whole
process they are rendered at a lower level of
resolution.

As stated earlier, two CUDA kernels execute the
steps of decoding and inverse transform required to
decompress the brick data in order to reconstruct the
whole volume. The decompressed data are stored in
a PBO, which can be accessed by the CUDA and
OpenGL functions.

To complete the visualization, an OpenGL call
copies the brick data from the PBO into a texture
buffer. Then, the CPU orders the construction of the
proxy geometry using several OpenGL calls. This
proxy geometry contains the slices where the brick
texture is mapped onto.

Depending on the resolution level, the texture
might not completely fill the available space in the
texture buffer. That is, the highest resolution level
uses the complete texture space, but low-resolution
textures require only a small portion of that space.
This means that the texture coordinates assigned to
each vertex of the proxy geometry must be adjusted
to the real texture size according to the resolution
level chosen for the current brick.

Analyzing each step of the visualization stage
more in detail, first we have to pay attention to the
decoding step. The process of decoding is performed
in a kernel on the GPU. This kernel reads the
compressed data of the brick from the compressed
volume stored in the GPU global memory and writes
the decoded data in a previously allocated buffer (to
be later processed by the inverse wavelet transform).
Each data block in the brick is assigned to a thread
block, where each thread processes a cell (whose
size is 4 x 4 x 4 in our implementation).

The decoding process is as follows. Each thread
starts by determining if its cell is non-null or not, as
indicated by the cell tag associated to the cell. If the
cell is non-null, the data reconstruction begins. The
thread loops through the elements of the cell, and
tries to load them from the arrays of non-null
coefficients in the compressed volume (see Fig. 4)
accessing the information stored in the significance-
map of the cell and considering the offset value for
the cell. If the cell’s significance map identifies a
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coefficient as non-null, its value is stored as is in the
buffer in global memory, otherwise a zero is written.

For each brick, data from the different blocks are
initially interleaved in global memory attending to
their absolute position in the brick. In order to
increase the spatial locality of memory accesses, the
decoded data are contiguously stored in global
memory in a blockwise fashion. Our proposal
arranges the data of each block together to reduce
the time spent in memory accesses when the inverse
wavelet transform is computed.

Once the decoding kernel has finished, another
kernel performs an inverse wavelet transform on the
GPU to restore the brick contents. Each data block
in the brick is assigned to a thread block depending
on its identifier, and each thread processes a chunk
of 2 x 2 x 2 voxels although this could be modified
with minor changes in the implementation.

The inverse transform is a recursive process, and
it is applied until the desired level of resolution is
achieved. The resulting coefficients of processing a
level of resolution are stored in shared memory,
where this data will be available to compute the next
level of resolution. When the desired level is
reached, these coefficients are copied from shared
memory into the OpenGL PBO. In the case of
processing the highest level of resolution, the
coefficients are directly stored in the PBO,
bypassing the shared memory and consequently
reducing its impact on the memory load.

When storing data in the PBO, the positions
where data are placed are determined by the
identifiers of the thread block and the current
resolution level. For low resolution levels, the data
generated by each thread block are grouped in order
to avoid chunks of data scattered in the PBO.

Fig. 6 shows how a 32 x 32 x 32 restored brick is
stored in the PBO for different levels of resolution.

Data block of
16° elements

Data block of _ Data block of
8% elements 43 elements

J ] [T
J | [T

Unused
@ @ @ r» texture
1

L] T

CUDA
Brick texture size:
32° elements

.g space
J
-
€5 Grouped
8a§ [ |, texture
oo blocks
%
T Max. resolution  Max. resolution /2 Max. resolution / 4

Fig. 6 — Storing data from shared memory into the
PBO for different resolutions.

4. RESULTS
4.1. NUMERICAL RESULTS

We performed our tests on a machine consisting
on a CPU multicore and a GPU. The CPU is an Intel
Core 2 Quad Q9450 with four cores at 2.66 GHz and
6 GB of RAM. The GPU is a NVIDIA GeForce
GTX 580 with 16 SMs of 32 SPs each featuring a
total of 512 processor cores operating at a clock rate
of 1.544 GHz, and with 1.5 GB of global memory.
Each SM has 64 kB of RAM with a configurable
partitioning of shared memory and L1 cache (16 kB
of shared memory and 48 kB of L1 cache, or vice
versa). Additionally, a unified L2 cache of 768 kB is
available for all SMs [16].

We compiled the code using the NVIDIA nvce
compiler provided within the CUDA 4.0 toolkit and
the gee version 4.4.3 under Linux.

Table 1 details the different datasets used in this
work that can be considered as representative
instances of volumes obtained from organic tissues
and synthetic materials The BrainWeb dataset was
obtained at the BrainWeb Simulated Brain
Database [19]. ModelHead corresponds to a
volumetric CT of a synthetic model of the human
head, whereas RealHead is volumetric dataset of a
real human head obtained with an MRI technique.
The last two volumes, A80 and Knee-001, were
obtained through segmentation using a GPU-
accelerated level-set segmentation algorithm on two
datasets comprising contrast-enhanced CT images.
In the case of A80 the dataset corresponds to several
brain vessel images that presented some observable
cases of aneurysms. Knee-001 corresponds to a knee
image. Fig. 7 shows renderings from the datasets
using our solution.

Table 1. Datasets used in this work considering
that in all the cases the number of bytes per voxel is 2.

Name Size File Size
RealHead 160 x 512 x 512 80 MB
Brainweb 256 x 256 x 181 23 MB

ModelHead 512 x 512 x 348 174 MB
A80 512 x 512 x 512 256 MB
Knee-001 256 x 256 x 256 32 MB

4.2. QUALITY ANALYSIS AND STORAGE
REQUIREMENTS

We have measured the quality of the proposed
decoding implementation with the volumes
described in Table 1. Tables 2 and 3 show the values
obtained for the BrainWeb and ModelHead datasets
for different levels of quantization.
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Fig. 7 — Volume rendering of the test datasets. From left to right and from top to bottom: RealHead, BrainWeb,
ModelHead, A80 and Knee-001.

Quality is measured here in terms of compression
ratio, mean squared error (MSE) and peak signal-to-
noise ratio (PSNR). A quantization level
corresponds to removing a specific number of least
significant bits from the coefficients of the wavelet
transform (see Section 3.1.2). Eleven different
quantization levels are considered in the
experiments, as indicated in the table.

Generally, a value of PSNR above 60 is
considered good, so we have chosen a quantization
level of 8 bits in our tests to measure performance of
the complete GPU volume rendering system (see
below). We noticed that changing the number of bits
removed during quantization did not significantly
affect the performance measured in terms of
execution times, however it does severely affect the
storage requirements as it was explained in
Section 4.1.

The compressed volume is stored in different
data structures that were detailed in section 3.2 and
shown in Fig. 4. Considering the implementation
issues it can be concluded that the nine integer
arrays that will be detailed in the next paragraphs are
required in order to store the compressed volume.

The cell tags for the cells in the volume are
stored in a 2-byte integer array. In addition, for each
non-null cell a significance map is generated, so the
indices of the maps, the maps themselves and the

offsets to access the coefficients are stored in three
8-byte integer arrays.

Table 2. Compression quality for different levels
of quantization for the BrainWeb dataset.

# Compr. | Compress. MSE PSNR
bits volume ratio
size (MB)
0 25.52 1:0.89 0.00 )
1 25.10 1:0.90 045 | 99.77
2 18.92 1:1.20 0.72 | 97.75
3 16.81 1:1.35 228 | 92.76
4 14.85 1:1.52 8.84 | 86.86
5 13.25 1:1.71 35.34 | 80.85
6 11.41 1:1.98 137.92 | 74.93
7 8.63 1:2.62 509.06 | 69.26
8 5.57 1:4.06 1614.11 | 64.25
9 2.89 1:7.83 3488.04 | 60.90
10 1.81 1:12.50 6628.75 | 58.12
11 1.15| 1:19.67 12135.79 | 55.49

All the non-zero coefficients are stored in four
byte arrays. These arrays contain as many bytes
as required by the non-null coefficients of
different lengths.

Finally one more 8-byte pointer array per brick is
required in order to store the indices of the non-null
blocks in the brick.
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Table 3. Compression quality for different levels
of quantization for the ModelHead dataset.

# Compr. Compress. MSE PSNR
bits volume ratio
size (MB)
0 111.82 1:1.56 0.00 )
1 89.08 1:1.95 0.45 99.79
2 64.35 1:2.70 0.63 98.31
3 45.87 1:3.79 1.34 95.05
4 33.02 1:5.27 3.25 91.21
5 23.95 1:7.27 8.58 87.00
6 17.74 1:9.81 23.81 82.56
7 13.09 1:13.29 66.71 78.09
8 9.57 1:18.18 187.64 73.60
9 7.08 1:2548 504.59 69.30
10 5.29 1:32.89 1320.25 65.12
11 3.82 1:45.55 3117.75 61.39

For the ModelHead image in Table 1 whose size
is 512 x 512 x 348 voxels with 2 bytes/voxel, i.e. a
volume of 174 MB, and considering a brick size of
128 x 128 x 128, 16 x 16 x 16 blocks and 4 x 4 x 4
cells, and a quantization level of 8 bits, the size
required to store the compressed volume is 9.57 MB.
This size could be reduced, as it can be observed in
Table 3, if a higher level of quantization is selected,
thus loosing quality in the visualized image.

4.3. PERFORMANCE ANALYSIS

In order to evaluate the performance we focus on
the GPU implementation of the different steps of the
rendering system. In particular, we have measured
execution times and speedups of the decoding and
inverse-transform kernels compared to the CPU
implementations. Then, we executed the complete
system on the GPU and took measures of execution

time for each step and of FPS for the whole system
varying the volume size and brick size parameters.

Regarding the speedup measurements, we focus
on the implementations of the decoding and the
inverse-transform steps implemented in CUDA.
Table 4 shows the results we have obtained for
different volume sizes that were constructed from
the RealHead dataset and considering average
values for only one brick. High speedups are
obtained for both kernels, especially for the inverse
transform. For both algorithms, the speedup
increases with the volume size, as the computational
capabilities of the GPU are better exploited when the
number of working threads is larger.

We also evaluate the performance of the whole
visualization process on GPU showing the execution
times for each step and the frames per second (FPS)
obtained. Table 5 shows the performance for two of
the datasets whose sizes are described in Table 1
using different brick sizes. As for the other
experiments the total time per brick is calculated and
multiplied by the number of non-null bricks (the null
ones do not require computations) obtaining the total
time (“Total" in the Tables). The FPS value is
directly calculated from this value. From Table 1,
we see that, in general, the larger the brick size, the
better the performance obtained. Generally,
incrementing the brick size increases the time
required to process a brick, but reduces the number
of bricks, resulting in a lower time to complete
a frame.

Table 6 details results for the 480 and Knee-001
datasets. In these cases there are empty bricks in the
volumes, i.e. bricks that do not require computation.
So, the number of non-null bricks are also specified
in the table and considered in the computation of the
time per frame (“Total” in the Table). As in Table 5,
for the same volume bigger bricks sizes require
smaller number of bricks and, therefore, smaller
execution times and higher FPS rates.

Table 4. Execution times in seconds and speedups respect to the CPU implementation of the decoding
and inverse-transform kernels operating on a single brick of the RealHead image for different brick sizes.

Kernel 64 x 64 x64 | 128 x 128 x 128 | 256 x 256 x 256
Decoding GPU 0.000077 0.000196 0.001205
CPU 0.003173 0.024237 0.207878
Speedup 41.2x 123.7x 172.5x
Inverse Transf. | GPU 0.000027 0.000192 0.001526
CPU 0.009205 0.069018 0.557935
Speedup 340.0x 352.6x 365.6x

304




Julian Lamas-Rodriguez, Francisco Argiiello, and Dora B. Heras / International Journal of Computing, 12(4) 2013, 298-307

Table 5. Execution times (seconds) and calculated FPS for the steps of the GPU rendering system varying
the brick size and considering the RealHead, BrainWeb and ModelHead volumes. All the bricks are non-null.

Dataset Brick # of Decode | Inv. Transf. Copy Render Total Total FPS
Size | bricks | per brick | per brick | per brick | per brick | per brick
(CUDA) (CUDA) | (OpenGL) | (OpenGL)
RealHead 64> 192 | 0.000077 | 0.000027 0.000016 | 0.000382 | 0.000502 | 0.0963 10
128’ 32 0.000196 | 0.000192 0.000023 | 0.000699 | 0.001110 | 0.0355 28
256° 4 0.001205 | 0.001526 0.000038 | 0.001546 | 0.004315 | 0.0172 57
BrainWeb 64’ 48 0.000081 | 0.000027 0.000016 | 0.000726 | 0.000850 | 0.0408 24
128’ 8 0.000226 | 0.000191 0.000023 | 0.001188 | 0.001628 | 0.0132 75
256 1 0.001571 | 0.001534 0.000038 | 0.002282 | 0.005425 | 0.0054 184
ModelHead 64> 384 | 0.000075 | 0.000027 0.000016 | 0.000529 | 0.000647 | 0.2484 4
128’ 48 0.000215 | 0.000192 0.000023 | 0.000940 | 0.001369 | 0.0657 15
256 8 0.001206 | 0.001524 0.000037 | 0.001559 | 0.004326 | 0.0346 29

Table 6. Execution times (second)s and calculated FPS for the steps of the GPU rendering system using 480
and Knee-001 datasets and varying the brick size. The number of non-null bricks is also specified.

Dataset Brick # of Decode Inv. Copy Render Total Total | FPS
Size bricks/ | per brick | Transf. per brick | per brick | per brick
non-null | (CUDA) | per brick | (OpenGL) | (OpenGL)
bricks (CUDA)
A80 32° 4096/531 | 0.000062 | 0.000011 | 0.000013 0.000246 | 0.000332 | 0.176 5
64 512/129 | 0.000055 | 0.000009 | 0.000016 0.000451 | 0.000531 | 0.068 14
128’ 64/31 0.000060 | 0.000023 | 0.000023 0.000819 | 0.000925 | 0.029 34
256 8/7 0.000139 | 0.000088 | 0.000037 0.001565 | 0.001829 | 0.013 76
512° 1/1 0.000819 | 0.000564 | 0.000061 0.002624 | 0.004068 | 0.004 | 250
Knee-001 32° 512/115 | 0.000060 | 0.000012 | 0.000013 0.000431 | 0.000516 | 0.059 16
64’ 64/29 0.000048 | 0.000013 | 0.000017 0.000806 | 0.000884 | 0.026 38
128’ 8/8 0.000058 | 0.000030 | 0.000023 0.001531 | 0.001642 | 0.013 76
256 1/1 0.000240 | 0.000226 | 0.000037 0.002981 | 0.003484 | 0.003 | 333

4.4. COMPARISON TO OTHER WORKS

To the best of our knowledge, this is the first
GPU implementation of a decompression scheme
based on [2].

The authors reported their solution required, at
best, nearly 10 seconds to reconstruct a volume of
512 x 512 x 512 elements on CPU. This includes
both the decoding step and the inverse transform
step. For a brick of the same size, Table 4 shows a
performance between 15 and 20 milliseconds for
both steps on the GPU.

Our inverse wavelet transform compares
favorably with other GPU implementations in the
literature. In a recent work [20], the performance of
a 3D fast wavelet transform was measured on a GPU
processing 64 frames of a video at different
resolutions, requiring 6.8 ms for a 512 x 512 video,
and 13.4 ms for a 1024 x 1024 video. This
implementation performed a one-level transform
using a Daubechies D4 wavelet [21]. To compare
these results, we have measured the performance of
our inverse-transform kernel for a single level
instead of four. Processing a brick of size
256 x 256 x 256, which is exactly the same size as
the former video, requires 1 ms in our solution. A
512 x 512 x 512 brick, which is twice the size of the
latter video, requires 7 ms.

The performance of the GPU decompression and
rendering system is also competitive with similar
solutions in the literature. A scheme based on the
Karhunen-Loéve transform [22] is presented in [1].
Compression is performed on CPU using a vector
quantization approach that preserves the coefficients
from blocks containing the most relevant edges.
Visualization is achieved in a two-pass render, the
first one devoted to decompress several slices of
data, and the second one to the actual rendering. A
512 x 512 x 512 is rendered at a rate between 6 and
11 FPS, depending on the size of the viewport. For a
volume with a similar size (ModelHead), our
solution achieves 29 FPS without the size of the
viewport affecting significantly.

Finally, a solution based on the S3 texture
compression algorithm (also known as DXT) [23]
was introduced in [24] for time-varying 3D datasets.
The reconstruction of the compressed volume data is
embedded into a programmable shader, and up to
three frames are compressed into the RGB channels
of a texture. The authors show results for a volume
of size 400 x 600 x 400 visualized at 35 FPS.
Although this performance is slightly higher than
our solution’s, our compression scheme provides
better results in terms of quality, with a greater
PSNR for a similar compression ratio.
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5. CONCLUSIONS

In this work we have presented a GPU solution
for decompressing and visualizing 3D datasets using
a multiresolution rendering scheme. A previous
compression stage based on wavelets, and performed
in the CPU, is required. The selection of the
quantization level applied to the wavelet coefficients
is the factor that decides the compression rate and
the SPNR value of the compressed volume. A
tradeoff value of 8 bits is selected for the
quantization level.

The GPU stores the compressed version of the
original volume. Our GPU solution processes the
compressed volume in 3D data pieces called bricks.
For each brick a level of resolution is selected
depending on its distance to the camera, and the
brick data are decompressed up to that level.

The decompression involves decoding and
computing the inverse wavelet transform of the data.
Both steps are implemented in CUDA, so they are
executed within the GPU. Unlike other out-of-core
techniques, communication between CPU and GPU
is minimal, avoiding the bottleneck that the PCI bus
between both is. As we apply four levels of wavelet,
our approach supports up to four different levels of
resolution (five including the original one).

The visualization is carried out using the texture
mapping technique. The decompressed brick data is
copied into an OpenGL texture buffer and mapped
onto a proxy geometry composed of several parallel
polygonal slices. The GPU rasterizes the geometry
by blending the slices to produce the final image.

The solution has been tested with five medical
datasets obtaining competitive results compared to
other recent GPU implementations of compressed
volume rendering. The refresh rates obtained are
competitive, the PSNR values are greater than 60,
and a compression ratio between 1:4 and 1:18 for
volume sizes in the range between 64’ and 256’ is
obtained. A higher quantization level, that could
give enough quality for some applications, would
increase the compression rate of the solution at the
cost of worsening these quality parameters.

As future work, we plan to extend our solution to
larger datasets, including datasets that do not fit
inside the GPU memory. For these cases, empty-
space—skipping techniques are essential to identify
bricks in the volume that do not add essential
information to the final rendering in order to keep an
interactive refresh rate.
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Abstract: Tools for archiving and extraction of data in Ukrainian National Grid for end-users’ applications are
proposed, implemented and deployed for practical applications in medical imaging, non-linear dynamics, and molecular
biology. Proposed tools provide the facilities to utilize large distributed storage space in grid infrastructures for different
practical tasks including desktop applications. Tools may be successfully used even when on client platforms it is
impossible to setup grid middleware, use web browser interfaces or grid security infrastructure authentication. Tools
consist of extensible client compatible with different software and hardware platforms; web service for data transfer;
web service for transparent data replication on grid storage elements. Copyright © Research Institute for Intelligent
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1. INTRODUCTION

Computing Grids [1] are geographically
distributed means for high-throughput computing
and large data storage in scientific, industrial,
commercial and others branches of activity.
Ukrainian National Grid (UNG) infrastructure [2]
was created in 2006 and is being used in number of
applied projects like molecular dynamics
simulations [3], neuroscience [4], non-linear
dynamics [5] etc. In all these applications large
amount of data is generated by imaging devices,
simulation or data processing software. Grid
infrastructure provides consolidated capabilities for
data storage, high performance computing, data
replication, user interfaces and other services. Grid
also provides means for data security, reliability and
high throughput access. The idea to transparently
use large distributed grid storage space to store data
from end-user server and desktop applications is
very attractive because it eliminates the necessity to
create big data centers at the user side, reduces costs
for administration etc. Such transparent grid storage
system has features of cloud or big-data storages and
should be implemented using grid services.

The most common way to access grid resources
is setup of grid middleware on client platform, via
web interfaces or accessing third party grid access
platforms. Unfortunately in many cases transparent
usage of grid infrastructure from desktops, servers
and devices is not easily possible. For example,

usually it is not possible to setup grid middleware on
the medical imaging device hardware, web interface
is no usually good to transfer large amount of data, it
is not always possible to provide personal
certificates for all possible users etc. Many tasks
may have other special requirements.

In present work we introduce a set of tools for
working with data in grid infrastructure using
conventional web services and extensible clients:
RAPTOR replication and data exchange service,
web-interface for AMGA metadata catalogue and
grid-enabled DICOM client. These tools may be
easily used for application of grid infrastructure to
work with medical and other data on workstations
without grid middleware on large number of
hardware and software platforms. Proposed tools
proved to be rather universal and efficient for wide
number of application including medicine,
dynamical simulations and molecular biology.

2. UNG GRID DATA STORAGE
REQUIREMENTS

The most specific requirements for grid storages
in UNG arise from medical applications [6]. For a
last few years several projects concerned with
medical applications of UNG have arisen. These
projects are held in the virtual organizations
(VO) [7] medgrid [8], telemed and others and are
devoted to sampling, archiving, reconstruction,
recognition, fusion etc. of electrocardiography
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(ECQG), electroencephalography (EEG), nuclear
medicine, ultrasound (USI) and other modalities
data. Grid infrastructure provides consolidated
capabilities for data storage, high performance
computing, data replication, user interfaces and
other services.

Data-intensive and computation-intensive
medical applications have some special features.
1) Medical data is usually being transferred in
special formats, like DICOM (Digital and Image
Communication in Medicine) [9]. 2) Medical images
contain personal patients’ information and transfer
of these data without patients’ consent is legally
prohibited. So it should be impossible to recover
patients’ personal data from images stored in the
grid infrastructure for persons who are not
authorized. 3) Medical images series may have large
size up to about 1 GByte per examination and its
transfer may require relatively large time and
evidently may be aborted. 4) Medical images usually
have large pixel depth (12-16 bits), may contain
additional data and thus require special visualization
techniques not available in conventional web
browsers. 5)Jobs processing in grid usually
introduce high latencies so client software should
take this into account. 6) Credential management
procedures for grid environment like personal grid
certificates enrollment and renewal are relatively
complicated and not usually acceptable for patients
and physician thus additional simplified
authentication methods should be used.

There are implementations of grid tools for
working with DICOM images, like MDM (Medical
Data Management) [10]. All these tools assume that
grid middleware is installed on the client machine or
there is DICOM PACS server available for
physician. Unfortunately most Ukrainian medical
centers still lack PACS servers and DICOM images
are created on physician workstation form other
formats. It is impossible to install and configure
glite middleware on client MS Windows-based
workstations and there are many other reasons why
MDM or other grid DICOM tools is hardly to be
used now.

Other UNG grid applications have not so strict
requirements and tools designed for medical data
may be easily adapted to them.

3. MEDICAL DATA STORAGES IN UNG

Taking into account all the requirements stated
above the following medical data storage approach
was suggested for UNG. All data is physically stored
on the replicated storage elements (SE). Replica
locations are managed by highly available LFC
(LCG File Catalog) grid services; data access to SEs
is controlled by SRM (Storage Resource

Manager) [11] grid services; clients accesses are
performed by specially designed web services that
interact with SRM. SRM standard provides
implementation-independent interface to storage
management functions e.g. third-party data transfers,
storage space tokens and reservations, nearline
storage interaction and access control. All data on
SEs is stored in anonymized form. It means that all
patients’ personal information should be wiped from
the metadata on clients before it gets transferred to
grid. All data on grid storages may be accessed by
authorized VOs members and may be used for
processing on grid computing elements (CE).

A decision was made that all the Storage
Elements which are devoted to medical data in the
UNG should support SRM control protocol.
Currently, all EGI-certified SE implementations
(Disk Pool Manager, dCache and StoRM) support
SRM which also ensures compatibility with various
client tools. Currently, not all resource centers
supporting medical image processing VOs got
certified for operation in the EGI and hence
information about storage resources is not published
in the global resource indexes.

Dedicated information index was set up within
the medgrid VO which collects information from all
relevant SEs as well as LFC services. This allowed
implementing web services for storage interaction
relying on standard EMI client tools and libraries for
data management.

Access to the SEs is controlled on the VO
membership basis. Permissions to access certain
files are deduced from VOMS [7] groups and roles
that get assigned to users and services by the VO
managers. A highly available VOMS service ensures
data access permissions integrity because all the
Storage Elements are configured to download
corresponding information from VOMS.

To facilitate data exchange between medical
information systems and portals and the grid storage
infrastructure, web services were developed and
deployed in the UNG.

The file exchange web-service (GW-FEX) [12]
in Fig. 1 provides a gateway for exchanging data
between web and grid infrastructure. The service is
implemented as asynchronous request processor and
provides RESTful interface for submitting new data
transfer requests and querying status of previously
submitted ones. Representational State Transfer
(REST) [13] is a modern architectural concept of
interactive multimedia (hypermedia) distributed
systems.

From the web-site, the service is able to
download and upload files to FTP and WebDAV
(Web Distributed Authoring and Versioning) [14]
shares. In the common usage scenario, web-portal
has a spool folder shared by one of the supported
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protocols accessible from the gateway service host.
Requests are initiated by the web-portal. After
successful completion of put-to-grid request, the
gateway service returns grid identifier of the stored
file which can be used later to submit pull-from-grid
request for getting data back to the web-portal.
Requests can be grouped to be processed in a batch.
From the grid-side, the service operates with its own

service certificate which is used to get authorization
from VOMS and to access LFC data catalogs and
SRM Storage Elements.

Permissions for a particular gateway are
controlled by VOMS attributes assigned to the
service. Standard EMI data management tools are
used to implement data transfers and metadata
registration in the grid infrastructure.

Normalized ECG ‘RESTful
Metadata XML interface interface o
client —
M dGrId Request queue
© GW-FEX
Rl coupled with
X Depersonalized Bidirectional RAPTOR
~ ECG data file exchange | @~ | Grid service R
p N B certificate NS
\ ‘ \\ 0
\ VY, bDAV\ Replica §
i € registration
Web-interface g

exchange share

|

Clients

Transfer
control

t}

Storage Element
(closest)

| s S
L LFC Data
- Catalog

UNG Infrastructure

HPC Cluster

Fig. 1 — Web-service diagram.

Automatic data replication for maintaining high
availability of data in the grid infrastructure is
achieved by complementing the GW-FEX service
with Robot for Autonomous Precisely Tunable
Operation of Replication (RAPTOR) service [15].
RAPTOR service shares the request queue with the
gateway service and continuously crawls through
LFC catalog to verify replication policies for data
stored in the grid. If some file was declared to be
highly available with minimal number of replicas
defined in the policy, then RAPTOR verifies
availability of existing replicas and submits requests
to produce new replicas when needed. This ensures
that some particular file in the catalog minimally has
a particular number of online replicas.

Consolidated deployment of GW-FEX and
RAPTOR services provides a simple web service
interface to reliable storage infrastructure for web-
portals and hiding all the complexity of grid
infrastructure internal operations. Consolidated
installation of both services was employed by
medgrid VO web-portal [7] to facilitate storage of
ECG data.

The whole picture of interaction between web
services and grid services is shown in Fig. 1. File
exchange service places new data received from web
portal on the closest grid storage element which is
located on the same site. After successful upload, an
entry for a file is created in the LFC data catalog and
grid unique ID (GUID) gets assigned to the file.
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From now, the file can be identified and accessed
from the grid services.

Data catalog record eventually gets checked for
conformance to a replication policy by the
replication service. If having a single replica is not
enough, requests for creating copies of the file on
different SEs are pushed to the request queue. After
successful replication, an entry in the LFC catalog is
updated and new data locations are populated in the
file record.

The RAPTOR service not just verifies a replicas
but also checks its health. In the case of faulty SE
data gets one more replica on a healthy one.

4. AMGA SERVICE

The ARDA Metadata Grid Application project
(AMGA) [16] has emerged as a general purpose
metadata catalogue service which allows attaching
any relationally organized information to files stored
in the grid infrastructure. AMGA can also be used as
independent grid-enabled RDBMS service.

For medicine grid-enabled applications, AMGA
is used for storing metadata found in DICOM
images as well as electrocardiograms and other
specific formats. Ability to select a dataset based on
some properties like patient age, living location etc.
is critical for population studies.

Besides providing a low-level API for database
access, AMGA features a set of components for
building web-based interfaces to metadata databases.
This functionality had used in several projects across
UNG that rely on central AMGA catalogue instance
coupled with central grid file catalogue.

5. CLIENTS

Clients are specially designed to be compatible
with different operating systems, to be independent
of grid middleware and to be easily extensible.
Portability is achieved by employment of portable
software and libraries: GUI was implemented in
Microsoft .NET; network components are
implemented using open source software, like cURL
library [17] and GNU compiles; database access is
implemented with ODBC interface; DICOM parsing
is provided in the portable DICOM Toolkit
library [18].

User client in Fig. 2 consists of several modules
interacting with each other and implemented as
different processes or threads. Number of modules
may be different depending task to solve. For
medical application the main module is graphical
user interface (GUI). It performs visualization of
images in DICOM format. Visualizing module
supports images with more then 8-bits pixel depth,
manual and automatic changing of brightness
scaling window position and width, multi-frame

mode with animations. GUI also provides means to
work with images data, open and save examinations,
lookup in local database, implements functions
associated with data transfer to/from grid
infrastructure. New functions may be added by
external software modules. Data exchange with grid
infrastructure is performed by network agent. Some
functions of DICOM data parsing are performed by
DICOM utility. Data anonymizing/deanonymizing is
performed by anonymizer utility.

contexts [~

Parser
¢ I T _¢_ ______ v '

Spool Directory

1 1
i Network Agent i
User i . !
interface €| Database : Curl transfer library :
1 A A 1
i | |

1
1
A x i Config. | !
DICOM || Anonymizer | ! [P Data | !
| [transfer | | .
| |
1 1

Fig. 2 — Client components diagram.

Interaction between modules is performed using
spool directories on file-system and local database.
Interactions via spool directories are used for
transactions that have no references to other
transactions or operate with data that should not be
saved permanently. Data consistency in spool
directories is provided by using simple request-
response locking technique. Consumer creates
temporary request file and adds information to it.
When finished temporary request file is copied to
main request file and after that temporary file is
deleted. Provider periodically or by notification
checks spool directory for main request files that
have no temporary files. While request is executed
its request file is used as log and transaction
database. Information is added into request file when
necessary. When execution is complete its request
file is copied to response file and request file is
deleted. Consumer checks spool directory for
response files without request files, acquires request
processing results and deletes the response file. Such
scheme being correctly used provides data
consistency even in the cases of software or
hardware failures, network transfer aborts etc. This
exchange method does not require any additional
libraries and is very portable.

Interactions via database are used for transactions
that may be simultaneously accessed by different
modules, when some records should be
saved permanently or when search -capabilities
are necessary.
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Anonymizer is an external software module that
provides removal of patient’s personal data from
DICOM images before transferring data to the grid
for storage and restoration of personal data after
transferring images from the grid. Anonynizer is
called by GUI for all images to be transferred.

For each image transferred to the grid
anonymizer inserts patient ID into local database if it
does not exist there and reads patient alias from
database. This alias is written into anonymized
DICOM file. Then values of DICOM tags needed to
be anonymized are cleared from anonymized file
and whole DICOM header of original file gets saved
in the local database. Request to send anonymized
file is passed to network agent. After transfer to the
grid network agent returns response file to user
interface which deletes all temporary data files and
inserts grid file location URL into the local database.
When images are transferred back from the grid
storage, anonymizer restores the whole DICOM
header from the database using patient alias. Image
files that have beem transferred to the grid may be
deleted on the client and restored later from the grid.
Tags that should be anonymized are configured via
client GUI and may be changed.

This approach provides complete anonymizing of
data on client side and thus eliminates transfer of
personal data. Personal information may be restored
only on the client that performed anonymizing.
Shortcoming of this approach is treatment of the
same patient on different clients as different persons.
This problem may be solved by exchanging of local
database content between authorized clients.

Network agent provides interaction with grid and
web services like data transfers, job submissions,
search queries etc. It is implemented as multi-
protocol daemon process that interacts with GUI and
other client components via spool directory.
Network agent is object oriented so new protocols
may be easily added by redefinition of some
callback functions in job context classes.

Network agent runs continuous loop where all
job contexts’ instances are executed. Now two job
contexts concerned with data exchange with the grid
infrastructures are implemented. Multiple instances
of each job context are allowed to run in parallel so
many data transfers to and from the grid may be
performed simultaneously. Network transfer
management is performed by cURL library. Each
job context passes authorization to web service using
login/password or personal user certificate. Then
data is transferred via HTTP POST request. After
transfer is complete, the response a file is passed to
the GUI. This file contains status information,
transfer statistics and grid URL of file for send
request.

6. MEDICAL APPLICATIONS

The proposed clients are used to implement tools
(Fig. 3) for archiving of medical images from
different Healthcare institutions in Ukraine. The
main goal of the project is creation of large archive
of anonymized DICOM images of different
modalities. One of such archives is created today by
The Institute for Scintillation Materials National
Academy of Sciences of Ukraine to store
scintigraphic and SPECT images from gamma-
cameras in different nuclear medicine institutions of
Ukraine.

ﬁ:v_ i) ) ()

B

Fig. 3 — Medical application GUI screenshot

Direct usage of MDM or other grid DICOM tools
for such tasks requires installation of grid
middleware on workstations or access to PACS
(Picture Archiving and Communication System)
DICOM servers from grid sites. The first task is
complicated and the second task is not usually
possible because LANs of medical institutions are
usually separated from the Internet. To simplify the
task of the grid archive access, DICOM images are
transferred to the grid infrastructure from
physicians’ workstations that can access local
DICOM images and Internet access via firewall or
proxy server by means of proposed clients.

Now there are three large projects in UNG
devoted to medical images archiving. The first one is
creation of emission tomography images archive in
the Institute for Scintillation Materials National
Academy of Sciences of Ukraine. This archive runs
web-service in the Institute for Cybernetics National
Academy of Sciences of Ukraine and has replicated
storages in UNG. Kiev Municipal Heart Centre and
Amosov National Institute of Cardio-pulmonary
Surgery wuse this archive for reliable medical
images storing.

Another project that use the services developed is
creation of electrocardiograms (ECG) archive in the
Institute for Problems of Mathematical Machines
and systems National Academy of Sciences of
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Ukraine. This archive is used in several medical
institutions of Ukraine supporting medgrid VO [8].

Currently there are about 20 thousands of ECGs
accumulated in the archive. Single ECG file has
nearly a few megabytes in size and hence there was
implemented aggressive data replication policy that
specify creation of replicas of all ECGs on all
accessible grid-storages [12].

Such approach enables for meeting all needed
requirements for carrying out population-based
studies on top of geographically distributed grid-
sites [19].

The  third  project is creation of
electroencephalograms (EEG) archive in UNG by
the Bogomolets Institute of Physiology National
Academy of Sciences of Ukraine. This archive is
used in National Taras Shevchenko University of
Kyiv, Ukraine and in The University of Vermont,
USA for archiving human and rat EEG data for
scientific research. This project also has the aim to
create multimodal database and knowledge dataset
of physiological data.

Another intended application of this client
software is employment of grid computing resources
for computation-intensive image reconstruction [20],
fusion, recognition etc. There plans to create
differential diagnostic service based on SPECT
images, and USI images [21], procession of ECG
and EEG data etc.

Now described clients lack capabilities for
searching data in the grid. This function is planned
to be implemented by interfacing AMGA Metadata
Catalog grid services and integration with MDM in
more distant future.

7. APPLICATIONS FOR MASSIVE
SIMULATIONS

Proposed storage services also used for creation
of massive scientific simulations results databanks.
The first databank was created in the National
Scientific Center for Medical and Biotechnical
Research National Academy of Science of Ukraine
[4, 5]. This data archive contains results of nonlinear
dynamics simulations for different systems including
neurons systems.

This archive contains about 400000 dynamics
trajectories for 1d, 2d and 3d systems (Fig. 4a)
simulated in UNG. Aggregation diagrams Fig. 4b
are built from data in these archives. Each pixel of
such diagrams corresponds to one trajectory in
different parameters space. Clicking in appropriate
place at the aggregation diagram gives a page with
extended parameters of trajectory. Besides image
representation diagram also is represented as table
with sorting capabilities. Searching is possible on
web page using web browser search functions.

a)

Fig. 4 — Archive of non-linear dynamics data: result of
3d system simulation (a), aggregation diagram (b).

One of the most successful UNG applications in
the VO MolDynGrid [3] uses the replication services
developed for storing simulation results and initial

parameters of molecular dynamics in grid
infrastructure for further complex analysis.
Currently there are about one thousand

trajectories of the molecular dynamics. Because of
huge size of one trajectory (usually from 10 GB to
100 GB for typical biological objects studies in
virtual laboratory), a decision was taken to have
from 2 to 3 online replicas of it on the grid storages
available for VO.

Using balanced policy in the replication
scheme allowed providing enough level of data
redundancy, reducing load on grid storage elements
and network communications.

8. CONCLUSION

Numerous successful applications of proposed
grid-services and clients for archiving of medical
images, EEG and ECG data, dynamical simulation
results prove that presented tools provide means for
quick creation and usage of grid archives. Tools
operate directly from users workstations and clusters
possibly eliminating complicated procedures of grid
middleware installation, certificate obtaining etc.
Built-in support for high performance data transfers,
data anonymization and extensibility are distinctive
features of this software suite. Future plans include
more tight integration of proposed storage services
with computing and data search facilities and
creation of grid expert systems on using proposed
storage services.
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Abstract: Several well-known data transfer protocols are presented in a comparative study to address the issue of big
data transfer for tablet-class machines. The data transfer protocols include standard Java and C++, and block-data
transfers protocols that use both the Java New 10 (NIO) and the Zerocopy libraries, and a block-data C++ transfer
protocol. Several experiments are described and results compared against the standard Java IO and C++ (stream-based
file transport protocols). The motivation for this study is the development of a client/server big data file transport
protocol for tablet-class client machines that rely on the Java Remote Method Invocation (RMI) package for distributed
computing. Copyright © Research Institute for Intelligent Computer Systems, 2013. All rights reserved.
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1. INTRODUCTION

Big data transfer across distributed client/server
systems has become a major concern in all fields of
information processing. Numerous big data transport
utilities have been developed to address the demands
in area such as genomics and cancer research [1, 2],
high-energy particle physics [3], and GIS
analysis [4].

Today’s big data file transfer utilities rely on
streams of either a single striped file or multiple
individual files, whose parallel send/receive client-
server strategies are the basis for the increase in big
data throughput. The GridFTP File Transfer
Protocol [5] is one such. GridFTP is characterized
by a fast file transfer protocol that supports large
files, secure file transfers, capabilities for multiple
destination points for file transfers, and an API that
allows various file transfer capabilities. GridFTP is
part of the Globus Toolkit.

Current big data transfer tools are designed to
make optimal use of hardware parallelism on both
the client and server sides of a distributed cluster
system. File transport, in such an environment, can
be organized into parallel file transfer streams.
BBFTP [6], BBCP [7] and the Fast Data Transfer
(FDT) [8] utilities are conceptually similar to the
GridFTP parallel file streaming approach. FDT, for
example, is written in Java and has the capability to
run on all major computer platforms. In addition,
FDT uses the Java New 10 (NIO) [9], where files
are processed in blocks-of-bytes rather than the byte-

by-byte data stream as performed by standard
Java IO.

The introduction of tablet-class machines such as
the Apple iPad and Android tablets extends the
paradigm of a client-server and opens up the
speculation of how big data transfer capabilities can
be provided. The challenges posed by tablet-class
machines are underscored by their limited hardware
resources: the lack of a disk array storage facility,
the limited number of communication ports,
underclocked processors to reduce heat production,
and flash-based memory that are more susceptible to
failure. However, one advantage offered by off-the-
self tablets is its processor configuration that
supports at least a dual-core processing unit.
Although limited, this processor parallelism
provides a means to implement producer/consumer
data transfer strategies. The availability of a
producer/consumer data transfer capability and the
use of a high-throughput data transfer protocol
would provide big data solutions to tablet-class
machines. In this paper, we limit the focus to the
design of a data transfer utility that can support a
tablet-class, client-server environment for big
data transfers.

As mentioned above, parallel transfer of large
striped-data files provide high throughput by utilities
such as GridFTP and FDT. Unfortunately, these
approaches require high-end peripheral hardware to
capture, coordinate and merge the multiple
concurrent streams of a single large data file that
arrives at the client-end. Tablet machines are at a
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significant disadvantage and as such a more modest
yet robust data transfer strategy is required.

This paper is an extension of our presentation
made at the IAACS 2013 workshop held in Berlin
[10], we limit the focus to the design of data transfer
utilities that support a tablet-class, client-server
environment for big data transfers. This paper
provides a comparative analysis of several Java and
C++ approaches that introduces optimizations to
reduce the standard Java and C++ IO overheads in
filling the socket buffer. Java NIO and
Zerocopy [11] are well known techniques described
and compared in this paper. A blocked (buffered)
Zerocopy is also described and presented as an
analog to the NIO method. It should be pointed out
that Zerocopy requires a Linux or Unix OS but that
should not be an issue on the server side of the
network. In addition comparisons with C++ byte-by-
byte streaming and a C++ blocked data transfers are
used in comparing the different strategies.

In the next sections, assumptions regarding the
use of Java New 10 (NIO) and Java Zerocopy are
described. The proposed approach describes the
integration of Zerocopy and NIO with data transfer
timing results provided To complete the
comparison, file transfer times between a standard
C++ and a block-data transfer are also provided.

2. BACKGROUND

Tablet-class client machines represent a
collection of window-oriented technologies for
which no unique operating system dominates the
industry. In such an environment, the design of a
generic client-server data transfer tool must rely on
programming languages that are compatible on any
and all computer platforms. Java is one such
language that bridges this gap but also provides a
Remote Method Invocation (RMI) capability that
supports coordination between distributed computer
platforms seamlessly. The RMI mode can be
relatively slow since the instructions are interpreted.
However, the use of RMI as a coordinator of a
distributed client-server architecture is not a
computationally intensive task; for that reason the
application of RMI should not incur substantial
overhead delays. On the other hand, the internal Java
IO stream can lead to TPC/IP overhead delays.

Java is an object-oriented language that employs
a byte-by-byte streaming IO process in preparing the
socket buffer for data transfer into the network
interface card (NIC) buffer and transferred to its
destination. At such a fine level of data granularity,
Java 10 is inefficient and does not scale well.

Block IO data transfers are a more efficient
alternative. As such, Java NIO was developed as a
block-oriented approach. Java NIO provides the

flexibility to adjust the 10 block size, which can
potentially affect the TPC/IP bandwidth-delay
product (BDP) and enhance its throughput
performance [12].

In addition to Java NIO, an optimized treatment
of internal data copying, known as Zerocopy, was
developed and made available in the NIO library.
The next two sections will describe the NIO and
Zerocopy approaches. The integration of these two
methods forms the basis of the desires tablet client-
server big data file transfer mechanism.

2.1. JAVA NIO

Java NIO is an open source library developed and
maintained by Sun (Oracle). NIO provides block-
oriented IO transfers of a file. The strategy of
sending a file in a block-wise fashion reduces the
software management needs for packetized byte
information. The Channel and the Buffer are the
principle NIO objects. Channels are analogous to the
original Java 1O but are bidirectional. In this sense, a
channel can be opened for read or for write or for
both. Data that is written into a channel must first be
written into a buffer, and data that is read from a
channel is read into a buffer. A buffer is an object
that holds the data that has been read from the
channel or holds the data that is to be written into the
channel. In the NIO library, all data is handled with
buffers. The interplay between the Channel object
and the Buffer object marks the operational
difference between Java IO and Java NIO. In Java
IO, data is written and read directly from Stream
objects. NIO allows, therefore, a pipeline between
the Channel object and the Buffer object to hide
access latencies.

We give two coding examples of NIO that
illustrates reading from and writing to a file. A more
complete description of NIO can be found in the
introductory tutorial [13].

Reading a file requires three steps. First, a
channel is acquired by creating a FilelnputStream
using the original Java IO library:

FilelnputStream fin = new FilelnputStream( "r.txt");
FileChannel fc = fin.getChannel();

Second, a Buffer object is created:
ByteBuffer buffer = ByteBuffer.allocate( buff Size );

Third, the data is read from the Channel into the
Buffer:

fe.read( buffer );

This example points out an important aspect of
the Channel and Buffer objects. Notice that the
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coding of the channel does not explicitly indicate the
amount of data that needs to be read into the buffer.
As a consequence, Buffer objects are endowed with
an internal accounting system that keeps track of the
amount of data that has been read and the amount of
buffer space remaining for additional data. This
capability will be wuseful in our future
implementation of a producer/consumer 1O strategy.

The second example is writing to a file. First, a
channel is created:

FileOutputStream fout =
"w.txt");
FileChannel fc = fout.getChannel(),

new FileOutputStream(

Second, a buffer is created and then data written
into it:

ByteBuffer buffer = ByteBuffer.allocate(buff Size ),
for (int i=0; i<message.length,; ++i) {

buffer.put( messagel[i] ),
}

buffer.flip();

Third, write into the buffer:

fe.write( buffer );

As in the previous example, the internal
accounting system of the buffer automatically tracks
the amount of data written into the buffer and the
remaining buffer space for which additional data can
still be written. The buffer.put() method fills the
buffer with data, and the buffer.flip()method
readies the newly filled buffer data to be written to
another channel.

Notice that the allocate() method defines the
block-oriented 10 size. This block size parameter
can be dynamically adjusted to affect TCP/IP
performance in combination with algorithms such as
Fast TCP [14].

NIO supports memory-mapped file 10. This
method when applied to reading and writing file data
can greatly improve channel-based 10 as well as the
original Java 10. Memory mapping is an OS
capability where the file system maps portions of a
file into portions of the memory on demand.

The following code is an example of how a
FileChannel() or portions of it can be mapped
into memory:

MappedByteBuffer mbb =
fc.map(FileChannel MapMode.READ WRITE, 0,

buff Size);

The map() method returns a MappedByteBuffer
as a subclass of ByteBuffer. Any manipulations
using this buffer are automatically mapped to
memory on demand by the operating system.

It should be pointed out that the Fast Data
Transfer (FDT) 1O tools is based in part on NIO.

2.2. ZEROCOPY

Zerocopy is a stream-based file transfer library
that differs from Java 10 in that it reduces the
number of internal data copying and associated
context switches. Fig. 1 illustrates the Java IO data
copying behavior when a request to send a file from
the server to a remote client. The following code
represents the data flow encountered in Fig. 1:

File.read(fileDesc, buf, len);
Socket.send(socket, buf, len);

I T ______________ |
: User Space Kernel Space I
|
I |
| 1 / Read buffer |
| !
1] DMA "
: Application buffer “/ e )
| \ Controller
1
1 3 ™ Socket buffer 1
1 Process |
L
: 3 |
1 "
R R R ] Disk

NIC buffer

Fig. 1 — Java IO internal data movement
& copying [11].

Table 1. Java 10 context switching [11].

Time User Context Kernel Context
Sequence
Before Read
Ty Syscall Read
T, Before Send
T; Syscall Write
T; Next Cycle

We see in this illustration that the file's data flow
copies the file elements into the Read buffer that is
then copied into the application buffer then into the
Socket buffer, and finally into the NIC buffer. In
order to handle these internal data transfers, the OS
intervenes with a corresponding number of context
switches. Table 1 lists the temporal order and
number of context switches incurred by Java IO.
Zerocopy mitigates the number of copying required
by Java IO by copying the content of the Read
buffer directly into the Socket buffer. The
transferTo() method in Zerocopy bypasses the
Application buffer and copies the Read buffer
directly to the Socket buffer. UNIX and various
flavors of Linux operating systems support
transferTo() by routing the method invocation to the
sendfile() system call. Rather than relying on the two
methods File.read() and Socket.send(), Zerocopy is
expressed by a single call:

transferTo(position, count, writableChannel);
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Fig. 2 illustrates the Zerocopy approach. From
Table 2, the associated number of context switching
is reduced from four to two.

F—— -~ T 77777 T T T T T T T T T T T |
: User Space Kernel Space 1
|
: Read buffer :
| t ; :
1 DMA :
I s Disk
: transferTo() ﬂ B
I Socke
| Do Socket buffer
I
I J
S . ST

NIC buffer

Fig. 2 — Zerocopy internal data movement

transfer times (milliseconds) between Java IO and
Zerocopy for which both use stream-based (byte-by-
byte) data transfer methods. The results of these tests
indicate a 50 times performance increase of
Zerocopy over Java 10. Similar results are reported
elsewhere in the literature [11]. The test used file
sizes ranging from 0.3 MB to 33 MB. Each file is
run ten times to determine a "best" file transfer time.
An average transfer time is not reported since the
network utilization can distort the significance of
average values.

Table 3. Machine functions and properties.

. Machine | Machine | Processor | Memory (0N
11].
& copying [11] Function| Types |Configuration| System
Server |MacBook |2.8 GHz Intel| 8 GB 0OS X
Table 2. Zerocopy context switching [11]. Core i7 13S%§43HZ Lion
Time User Context Kernel Context Client | MacPro | 2x2.4 GHz 16 GB OS X
Sequence Quad-Core | 1066 MHz| Lion
Before transferTo() Intel Xeon DDR3
To Syscall Read and Send ECC
T, Next Cycle

2.3. ZEROBUFFER

Unlike NIO, Zerocopy does not rely upon the
application buffer to assist in file transfers under the
TCP protocol. As a consequence Zerocopy lacks the
block-oriented IO structure required to support
parallel file transfers, as does NIO. A closer
examination of the transferTo() method, however,
finds that a position index can be set to a beginning
location of the file to be transferred. This capability
can be used to transform Zerocopy into a block-
oriented IO implementation, which is referred to as
ZeroBuffer. The following code fragment details the
block-oriented ZeroBuffer implementation:

fc = new FilelnputStream(input).getChannel();
while (position ! = fc.size())

position += fc.transferTo(position, bufferSize, sc),

}

The file channel fc is initialized and set to the
new FilelnputStream. Within the while loop, the
transferTo() method is invoked with a position
indicator that points to a location within the file, a
block  bufferSize, and the socket channel
descriptor sc.

The complete programs for all the file transfer
tests are available at [15].

3. FILE TRANSFER COMPARISIONS

Table 3 provides the detail of the Client/Server
machine properties. Table 4 summarizes the file

NIO and ZeroBuffer are characterized by explicit
block (buffer)-size assignments, which from Fig. 1 is
referred to as the application buffer. Table 5 lists file
transfer times measured for Zerocopy, NIO and
ZeroBuffer. Although, Zerocopy is independent of
the application buffer size its transfer time is listed
for each buffer for comparison purposes only. The
best NIO and ZeroBuffer results are listed as a
function of their corresponding application buffer
sizes, which range from 1 KB to 16 MB. The results
presented in this paper are for a 1.03 GB file. Other
results for smaller files produced similar results.

The experiments also varied the TCP Send/Recv
buffer sizes. The Mac OS X sets the default size of
the Send/Recv buffer to 64 KB. The TCP Sendbuffer
(on the server-side) is manually adjusted and is
coordinated with a reciprocal assignment (on the
client-side) for the TCP Receive buffer using the
same size.

Table 4. Data transfer times.

Files (MB) JavalO | Zerocopy
(ms) (ms)
Filel (0.3) 7 3
File2 (0.6) 13 7
File3 (1.2) 3687 47
File4 (2.5) 6103 107
File5 (4.9) 14969 298
File6 (9.9) 29307 564

Fig. 3 is a plot of the corresponding file transfer
times listed in Table 5. The TCP Send/RecvSpace
buffer size is manually set to 64 KB. NIO, Zerocopy
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and ZeroBuffer deliver comparable transfer times.
There are several items to point out. First notices
that ZeroBuffer suffers noticeable overheads for
small application buffer sizes (1 KB to 2 KB);
whereas, the while-loop introduced to create its
block-oriented 10 structure shows little difference in
comparison with Zerocopy. This is quite surprising
given the somewhat '"artificial" block-oriented
approach taken. The second item to note is the
behavior of the NIO method. NIO exhibits file
transfer slowdowns for small application buffer sizes
(1 KB to 2 KB); as well as for larger buffer sizes
(2MB to 16 MB). Overall, NIO and ZeroBuffer
methods are comparable to the file transfer time of
Zerocopy, between the application buffer sizes
ranging from 4 KB to 1 MB.

Table 5. File size = 1.03 GB
(TCP Send/RecvSpace = 64 KB).

Application | NIO ZeroBuffer | Zerocopy
Buffer Size (ms) (ms) (ms)
1KB 109.88 135.15 88.2
2KB 96.62 100.8 88.2
4KB 88.96 88.4 88.2
8KB 89.69 89.05 88.2
16KB 90.29 89.11 88.2
32KB 89.23 89.62 88.2
64KB 90.26 89.12 88.2
128KB 89.79 88.98 88.2
256KB 88.46 88.81 88.2
512KB 88.45 88.36 88.2
IMB 89.97 88.28 88.2
2MB 92.22 88.55 88.2
4MB 94.06 88.45 88.2
8MB 94.55 89.03 88.2
16MB 94.7 88.51 88.2

Transfer Time
File Size = 1.03GB (TCP Send/RecvSpace = 64KB)
160
Bnio

110
B ZeroBuffer

120 & ZeraCopy

&

Transfer Time
[100 x millisec)
8

e

&

BMB  16MB

Application Buffer Size

Fig. 3 — A plot of the Table 5.

The TCP Send/RecvSpace buffer settings are
considerations based on work by several authors
investigating [16, 17, 18] the optimal tuning of TCP
file transfers. Starting with the TCP Send/RecvSpace

buffer sizes of 64 KB, 156 KB, 256 KB, 512 KB,
and 1 MB, we find little difference in file transfer
performance. What we observed, however, is that
the file transfer performance for NIO improves with
increasing TCP Send/RecvSpace buffer size. Fig. 4
and Fig. 5 are presented to illustrate this observation.

Transfer Time
File Size = 1.03GB (TCP Send/RecvSpace = 256KB)
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W ZeroBuffer
El ZeroCopy
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32KB 8MB  16MB
Application Buffer Size

Fig. 4 — Results for TCP Send/RecvSpace = 256KB.

Transfer Time
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Fig. 5 — Results for TCP Send/RecvSpace = 1MB.

As a final set of comparisons, we examine the
transfer speeds that can be obtained with a byte-by-
byte and block or buffered data transfer approaches
using C++. The two methods are referred to as
C++(1) and C++(2), respectively. These methods are
analogous to standard Java and Java NIO, whereas a
C++ version that is comparable to Zerocopy was not
readily available for this study. Fragments of the
socket program for each method are provided below
[19, 20]. C++(1) uses a simple while construct:

int ch;
char toSEND[1];

while((ch=getc(file))!|=EOF) {
toSEND/0] = ch;
send(socket, toSEND, 1, 0);
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C++(2) uses a buffered send size of 1024 bytes as
depicted in the following code fragment:

char buf[1024];

while (Ifeof(file)) {
int rval = (int)fread(buf, 1, sizeof(buf), file),
int sent = (int)send(sock, &bufloff], rval - off, 0),

off += sent;
/
The TCP Send/RecvSpace for the server

processor is maintained at a size of 131,072. On the
client side, the TCP Send/RecvSpace is fixed at a
size of 65,536. No attempts are made to study the
transfer times as a function of the TCP
Send/RecvSpace. The sole purpose of this
experiment is to compare the relative performance of
the various C++ file transfer methods with Zerocopy
and ZeroBuffer. The client/server configuration is
hosted on a local area network (LAN) within the
Center for Advance Energy Studies CAES) in Idaho
Falls. We are currently working towards the
assessment of file transfer performances over a wide
area network (WAN).

Table 6 displays the data transfer times for the
different Java and C++ programs. The time is given
in milliseconds. The files range in size from
0.256 MB up to 16.4 MB. The buffer size used for
ZeroBuffer and C++(2) is set at 1024 bytes.

Table 6. Data transfer times.

results for C++2, Zero copy and Zero copy + buffer.
Again a buffer size of 1024 bytes is used.

Table 7. Data transfer times.

File Size ZeroBuffer Zero C++(2)
(GB) (ms) (ms) (ms)
734 7726 6092 5068
1.47 15194 13332 10098

Comparing the ratios between Zero (copy) and
C++(2), the transfer rates of C++(2) now appears to
be given by factors of 1.2 (0.734 GB) and 1.32
(1.47 GB), respectively. These results are in good
agreement with our prior experiments.

We make one final observation with regards to
the transfer of large files. In Figs. 3, 4, and 5
ZeroBuffer consistently underperforms Zero (copy)
for buffer sizes less than 4 K bytes. For buffer sizes
of 4 K bytes and larger, ZeroBuffer is comparable in
file transfer times to Zero (copy). To test the
consistency of this behavior, Table 8 list the results
of performing the same file transfer experiments but
using a buffer size of 5K bytes. For both the
0.734 GB and 1.47 GB files, ZeroBuffer and Zero
are comparable in transfer time as argued. What is
not expected is the reduction in transfer times for
C++(2) by more than 50 %, and between 2.8 to 3.25
speedup over ZeroBuffer.

Table 8. Data transfer times
(Buffer =5 KB).

File Size ZeroBuffer Zero C++(2)
(GB) (ms) (ms) (ms)
0.734 6537 (6092) 2010

1.47 12865 (13332) 4583

File Size | ZeroBuffer | Zero | C++(2) | C++(1)
(MB) (ms) (ms) | (ms) (ms)
0.256 9 8 1 333
0.512 16 18 2 596
1.0 31 31 4 1158
2.0 55 54 7 2267
4.1 83 85 16 4236
8.2 143 151 34 8273
16.4 161 164 67 16636

Notice that the data transfer rates for the C++(2)
implementation is far superior to its byte-by-byte
transfer counterpart. This is consistent with results
between Java and Java NIO. In either case the block-
data transfers utilizes the I/O subsystems more
efficiently. This of course is a well-known result.
The transfer times of C++(2) varies by a factor of 9
to 2.5 times faster in comparison to the
corresponding Zero{Buffer, copy} transfer times;
however, notice that the speedup factor decreases
with increases in file size. In other words, it appears
that for much larger file sizes C++(2) may reach
parity with Zero{Buffer, copy} transfer rates. To test
this conjecture, we ran two test cases using file sizes
of 0.734 GB and 1.47 GB. Table 7 presents the

In Table 8, the times for Zero (copy) are inserted
only for comparison purposes (recall that Zero
(copy) is buffer size independent).

Determining a more optimal buffer size for
C++(2) requires further experiments; although, we
suspect that further experiments with larger files and
larger buffer sizes will exhibit behavior similar to
those illustrated in Figs. 3, 4, and 5.

4. SUMMARY AND CONCLUSION

We developed data transfer programs using
commonly available socket libraries. The socket
programs for NIO, Zerocopy, and C++ are
straightforward and  required no  special
programming considerations. The timer resolution of
the C++ programs is based on the Apple LLVM
compiler and developed under the XCode Integrated
Development Environment (IDE) [21].
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The comparative collections of I/O results are
presented. The programs build upon standard Java
and C++ techniques and libraries available to the
general users. More specialized routines might be
found at advanced application websites or through
proprietary sources.

The data streaming strategy of Java IO and C++
are known to be inefficient for big data transfers. In
this study, block-oriented IO methods are compared
to an efficient non-blocked IO method known as
Zerocopy. In addition, this paper provides the first
direct comparison between Zerocopy and NIO.

A Dblock-oriented IO method (ZeroBuffer) is
introduced that supports Zerocopy efficiencies over
a large range of application and TCP buffer sizes.
Although the Zerocopy method can be reliably used
to address the appetite of tablet-class client/server
file transfers, ZeroBuffer has the potential to support
non-blocking, concurrent 10 threads, which is an
important feature of high-end grid-IO.

Overall, the buffered C++ implementation proved
to be the fastest of the file transfer codes, but
required a buffer size greater than 4 K bytes.
ZeroBuffer is shown to have similar behavior;
although, not as fast.

A further advantage may be gained when clients
and server are hosted on a WAN where the
bandwidth utilization for the transfer of large data
files is strongly influenced by the behavior of the
TCP network protocol under extreme external
demands. In this regard, the block-data transfer
mode can provide a self-throttling mechanism to
reduce the TCP overhead latencies experienced by
large data transfers initiated in a single-continuous
send-operation mode over the network.

Finally, this paper represents the initial stages of
a much more ambitious effort to provide serious
information discovery and analysis on tablet-class
machines. To achieve this goal, a new paradigm of
big data transfer should be considered and realized:
raw data should never be transferred across wide
area networks. Instead raw data should be localized
in persistent data servers where stored data should
only be marshaled into a form that is information-
dense; that is, a form that can be easily visualized,
virtualized, and orders of magnitude smaller in size
than its original raw data footprint. Optimal data
transfer time or data compression is not enough to
achieve this goal. A big data system will likely
require block-algorithms to sustain a
producer/consumer-like  pipelined data transfer
protocol, where blocks of data are computed and
transferred across the network in an overlapping
pipeline fashion. In order to sustain this operation, a
distributed server farm that coordinates the in-situ
placement of raw data and its access will prove to
be advantageous.
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Abstract: Tracking, partitioning and tracing in modern dynamic high performance computing systems are three of the
most innovative and important development aspects for performance optimization purposes and state-of-the-art
advanced quality. This paper discusses these three aspects with respect to distributed systems and proposes new
mechanisms for an advanced utilization of software in this domain.

We present a specific tracking mechanism via vector clocks for model and code partitioning purposes and the
determination of causality relations. Further, a tracing approach for an effective analysis and thereby utilization of code
and the corresponding architecture is introduced. The combination of both approaches leads to a high degree of
parallelism and a fine-grained structure of execution units, that further traced, supports a precise analysis of
synchronous and asynchronous system’s behavior as well as an optimal load balancing. The mechanisms are introduced
with respect to a model based control engineering tool and event diagrams. Copyright © Research Institute for

Intelligent Computer Systems, 2013. All rights reserved.

Keywords: partitioning; event tracing; vector clocks; control engineering; distributed systems; virtual time.

1. INTRODUCTION

The modern digital computing era involves
increasing amounts and relations of stored data as
well as more complex computation platforms,
architectures, tools and frameworks. A common,
mandatory and important aspect is the prevention of
computation- and storage overheads i.e. the efficient
use of soft- and hardware. Especially the modern
distributed system domain reveals a more complex
determination of causality relations due to the use of
replicas, unreliable hardware, large scales of data and
commoditized machines. The increasing number of
requirements, functions, safety issues or assistance
demands call for a significant increase of computing
power accompanied by the request for reduction of
energy and costs. To handle these requirements the
multicore processor technology starts to permeate
electronic control units (ECUs) in cars for example.
Existing applications cannot realize immediate benefit
from these multicore ECUs, because they are not
designed to run on such architectures.

The Itea 2 project 09013 AMALTHEA' is a state
of the art research project in the automotive industry

'tea 2 09013 AMALTHEA, BMBF funded.

that addresses building a model-driven platform for
this new generation of development environments,
which supports the development of multicore
systems, takes product line engineering into account
and produces AUTOSAR [1] compatible software.
Tracing and partitioning are two of the challenges to
be met with respect to timing constraints. This paper
presents a novel approach for both partitioning and
tracing and further supports the determination of
causality relations among events in a distributed
system. Multicore systems in this case are one
example for distributed systems.

Partitioning in context directed acyclic graphs that
occur in most computing applications, influence
system performance. The more efficient the
partitioning  process forms computation sets
distributed among computation units i.e. processors,
the more the systems benefits from time issues,
energy demands or high performance real time
applications. These aspects are common topics of
interest in almost all areas of science and technology.

Forming computation sets mostly concerns the
division of processes into subprocesses whereas
each subprocess consists of computational load [2].
In terms of graph theory these subprocesses are
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denoted as nodes. A node often reveals uni directed
communication with one or multiple other nodes,
such that a directed transition between them denotes
dependency as shown in Fig. 1.

Node A Node B

Fig. 1 — Node dependency.

Node B depends on a result of Node A and
thereby depends on Node A. In case Node B is
assigned to a different computation unit i.e.
processor, the system must preserve the given
ordering of both nodes. Otherwise Node B may be
started without Node A being finished resulting in
Node B termination violation. Such order may be
preserved via inter process activation, client / server
calls, OS-events (Node A (set) and Node B (wait))
or Semaphores.

The paper is organized as follows. The next
section introduces related work on tracking,
partitioning and tracing. Afterwards the concrete
usage of vector clocks is described with respect to a
model driven control engineering example, that is
adapted to several different partitions and load
balance approaches. The following section
introduces tracing as a more comprehensive
approach for performance and partitioning
optimization purposes. Finally, the novel approach is
analyzed according to benefits, ease of use and
industrial relevance. Corresponding contents are
published with respect to [3].

2. RELATED WORK

Innovation according to virtual time, tracing and
partitioning stretches over years of development and
huge amounts of different mechanisms and
algorithms addressing the increasing number of
requirements and constraints emerging from
all kinds of political, entertainment, safety or
energy demands.

Tracking, initially used in technical and
theoretical computing, considers causality relations
and the determination of event orderings in
distributed systems with the help of logical
clocks [4]. Extending this mechanism in order to
gain information about the program’s global state
and possible concurrency, vector clocks can be
used [5, 6]. Newer approaches focus on applying the
exposed mechanisms to models, transferring models
to mathematical equations [7] or introduce graphical
editors, model checkers, code generators, simulators
or dynamic systems and algorithms [8]. All these
mechanisms basically address the derivation of

timing characteristics for causality relations and
thereby ensure logical and temporal correctness
within  communication,  synchronization and
computational flows actively by applying the certain
mechanisms to a system.

FPartitioning is a significant approach for an
efficient assignment of runnables to tasks in order to
utilize parallel computing. The generic PCAM
(Partitioning, Communication, Agglomeration and
Mapping) approach by Foster et al. [9] forms the
basis for most common partition approaches. It
focuses on providing benefits like improving cost-
performance ratio, availability via avoiding
redundancy, computing power and understanding of
a program’s behavior due to more detailed
information about the problem structure. Partitioning
is a division of independent parts in order to solve
them in parallel. Therefore, small tasks must be
defined, that utilize processors in an optimal way
and avoid duplicate data and calculation. The
smaller the partitions get, the more flexible and
potential the parallelism is. Foster [9] further
introduces domain decomposition and functional
decomposition. In domain decomposition, data
associated with a problem is divided into small parts
with approximately equal size. Afterwards,
computation is partitioned by associating the
operations with the data on which it operates. The
focus within functional decomposition lies on the
computation that is to be performed instead of the
data that is manipulated by the computation. The
computation is divided into disjoint tasks, with a
subsequent data requirement analysis. In case the
data requirements are disjoint, the partition is
complete, otherwise considerable communication is
required to avoid data replication.

Tracing addresses revealing a program’s
execution according to more complex problems,
errors, ineffective patterns and a lot more issues by
considering way more parameters like architecture
properties, scheduling paradigms, signals, runnables,
processes, or threads and corresponding timing
properties depending on the used trace format.
Though, tracing only passively applies optimization
and efficiency on a system, as specific trace format’s
APIs are used to generate trace files that can be read
by specific tools. These tools mostly reveal the
system’s behavior in a timeline diagram and users
are supposed to react and improve systems
according to conflicts and ineffective patterns.

3. PARTITIONING

The following sections propose a novel approach
for distributing execution units, emerging from both
model elements i.e. data flow systems and vector
clock traces as a result of specific code extensions.
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The mechanism is based upon a transformation to
a data flow graph (directed acyclic graph) and a
subsequent partitioning for either a dynamic number
or a fixed number of processes. The final result leads
to an optimal utilization of parallel resources.

3.1. DATA FLOW PARALLELISM

Typical data flow systems provide a fine grained
early degree of parallelism. Having a data flow
system like Fig. 2, delay blocks encapsulate
calculation dependencies providing distributed
calculations due to their output being not directly
dependent of their input.

j 4 > ;f:\ . -
“Ramp Gain1 “Ksumi Scol—pe
__yDelay1 E2
_1 _ﬂ
2 z
Gain2 Gaind  |Delay3
4Sum2
R Delay2 R
=1 ‘l’
2 z ]
| Gain3 Sum3 Gains |Delay4
}—@—{4—

Fig. 2 — Data flow diagram.

The data flow diagram shown in Fig. 2 is derived
via the frequency response:

Gainl + Gain2 -z~ ! + Gain3 - z72
H(z) = - — - — (1)
1+ Gaind -z 1+ Gain5-z~2

In the first step i.e. calculation cycle, Ramp and
Delayl to Delay4 can be calculated in parallel by
either different runnables, tasks or cores. The second
step contains all blocks connected to the
encapsulated blocks of the first step i.e. Gainl to
Gain5. The fact that the subsequent components
hold more than one input ie. dependencies of
previous components, Sum3, Sum?2, Suml and Scope
must be executed subsequently after the first two
calculation cycles (see data flow graph Fig. 3). Such
calculation cycles may be also known as sequential
code segments (SCS) [10].

Delay1 Ramp

Sa
Delay3 Gainz\

~a AN \
Gain3 Gain4 \Gaim
S TSA TSa

Gain5 —+» Sum3 —+» Sum2 —» Sumi —» Scope

Delay2 —»
Delay4d —»

Fig. 3 — Typical DFG with nodes (blocks)
and transitions.

3.2. DATA FLOW GRAPH

A data flow graph (DFG) displays nodes
(execution units, algorithms, calculations, functions,
events, blocks, etc.) connected to other nodes via
transitions or edges sequentially (often from left to
the right) and is convenient for the exploration of
parallelism due to its asynchronous nature. It can be
both created via modeled block diagrams (control
engineering) or via vector clocks augmented code
(described in Section III-C) and can be transformed
to a table based structure revealing mandatory
sequential orderings, dependencies (horizontally,
indicated by arrows) and concurrency (vertically).
Any DFG usually exposes a directed acyclic graph
structure such that DFG(N,T,R,S) is defined by N
nodes (execution units), 7 transitions, R root nodes
and S sink nodes with no directed cycles. Any node
n &N lies at least within one path from a root node
reR to a sink node s &S. Any transition ¢ &T
between two nodes n; and s, represents data
dependency between the two nodes and implies
mandatory sequential ordering such that the
execution of n; precedes n, in time. Hence n;, and n,
shall not be mapped to different processes or
processing units as they can not be calculated
in parallel.

A node n may possess multiple in- and out-
transitions and transitions must always cross one or
more sequential code segments (SCS). A low level
DFG can be seen in Fig.3 exposing the
data  flow model of Fig.2, featuring
R = (Delayl, Delay2, Delay3, Delay4, Ramp),
S =(Scope), #T =13 and #N = 14. Such DFGs can be
automatically created from any block diagrams such
as in the Damos environment [11]. A critical path
leading from a root r to a sink s provides the maximal
number of sequential nodes and represents the
minimal runtime of a program. There may exist
several critical paths in a DFG. One possible critical
path in Fig. 3 starts at Delay4 and ends at Scope (the
other critical path in this example starts at Delay? and
ends with Scope). Any usual control engineering
based blockdiagram can be transformed into a DFG
via forming SCSs with the help of delay calculation
encapsulation and depth first search calculations. A
DFG is mandatory for an optimal partitioning,
respectively efficient utilization of distributed
resources as described in Section III-D. The process
of finding the critical path starts with identifying the
root and checking all dependent nodes, whether one
or more nodes provide the distance of the root 1 to
the farthest sink. Afterwards for all selected nodes
that provide that distance, the process is repeated
regarding the selected node’s sink distance 1 until the
sink is found. This methodology identifies at least one
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critical path via a helping function, that calculates a
node’s distance to the farthest sink.

3.3. VECTOR CLOCK AUGMENTED
EXECUTABLE CODE

Any program code can be partitioned to one or
more processes or initially execution units featuring
dependencies. Most common programs use message
passing techniques and data transfer between
functions, objects and similar execution units for
communication. In case such a program is not
related to a modeled system (like described in
Section 3.1), one can extend any program’s code,
adding vector clock API calls at specific points for
both creating vector clock traces and use validation
mechanisms for tracking data updates and determine
causal dependency relations among transactions.
Data updates thereby support synchronizing events
in a totally decentralized way. Especially modern
transactional systems using partial replication and
scalable distributed multiversioning such as NoSQL
data grids like BigTable, Amazon Dynamo or
Cassandra require multiversion based update
mechanisms [12]. A simple vector clock trace in
combination with the executable code can be used in
order to create an unpartitioned DFG on the one
hand as well as a partitioned message passing based
event diagram on the other hand. Such an event
diagram is shown in Fig. 4 as an example, featuring
three processes and several communicating events.

q[4,6,3]
d[4,0,4] @ z[2,5,5]
p[4,5,3]
® ¢[3.0.0] 0[2,4,3] v[0,0,4]
g ,0,
= n[2,3,3] x[0,0,3]
b[2,0,0] @ w[0,0,2]
v[0,0,1]
al1,0.0] T/ﬁ
process1 process2 process3

Fig. 4 — Typical event diagram with three processes.

It is assumed, that processes communicate
through message passing in a classic asynchronous
way such that messages consume a specific delay.
The three processes show parallelism, whereas the
determination of causality relations (provided by the
vector clocks) respectively the knowledge of the
precise time related occurrence of events and their
communication is mandatory to avoid conflicts and
preserve the program’s semantics. The mentioned
mechanism for causality relation determination of
events was introduced by [5] and [6] simultaneously

via comparing vector clocks using the
following rules:
e1 = e; means Ceq[p] < Cez[q] (2)
and vice versa:
Ce1[p] < Cezlq] means ey — e, 3)

Here, e; and e, define two different events with
corresponding vector clock arrays C,q and C,,, —
defines the “happened before” relation and p, g
define two transactional processes.

A generated vector clock trace already references
a specific number of processes and can be used in
order to assign the code segments to different
processes i.e. to perform the partitioning. A vector
clock trace can be extended as described in Section
4. Without a vector clock trace, the described DFG
is a central activity for partitioning and load
balancing. A DFG can be created via identifying
nodes  (execution  units) and  transitions
(dependencies).

In order to gain a partitioned event diagram (see
Fig. 4) from an unpartitioned DFG (see Fig. 3), all
execution units need to be assigned to processes.
This can be dynamically performed assuming a
static predefined number of processes. Each API call
then assigns the execution units chronologically to a
process with respect to their communication.
Assuming execution unit a with transactions to » and
m (Fig. 4), m could be assigned to process2 or
process3. Process2 is chosen if execution unit / at
process2 finished. If / is not finished, process3 is
chosen if execution unit v finished. If both processes
are performing calculations (execution units / and v)
at execution unit m assignment time, the event will
be assigned to the process, that notifies its
availability first. The wvector clock mechanism
thereby ensures the correct replication of the actual
behavior i.e. the call sequence in a distributed
system. This mechanism is important especially for
distributed  systems consisting of multiple
commoditized systems, meeting the necessity of a
global time for causal ordering determination e.g.
managing consistency in the Amazon Dynamo
architecture [13]. The actual DFG for the event
diagram in Fig. 4 is shown in Fig. 5. The DFG
reveals an optimal parallelism of three processes,
providing a complete system calculation consisting
of 15 nodes in six SCSs (steps) and five cross
process communications indicated by
dashed arrows.

The proposed executable code trace generation
extension provides causality relation determination
as well as the DFG- and event diagram partitioning

327



Robert Hoettger, Burkhard Igel, Erik Kamsties / International Journal of Computing, 12(4) 2013, 324-332

approaches for an efficient parallelism support via
trace analysis.

a —» —» c —» d
~ =~ sy
~A . A
I )—0m ) —{n ) o =2 —{ g
4 N ~
- P -
v.o—Low x>0y >z

Fig. 5 — Event diagram correspondent DFG.

3.4. DFG PARTITIONING

Besides the use of the vector clock API call
augmented executable code for program partitioning
and distribution, data flow systems can utilize
similar mechanisms in order take advantage of
parallelism. Data flow diagrams (Fig.2) can be
transformed to data flow graphs (DFG, Fig. 3) as
described in Section 3.2 in order to apply a specific
partitioning mechanism for assigning nodes to
runnables or processes. The DFG’s number of SCSs
defines the minimal number of steps (sequential
executions) and the number of rows defines the
maximal number of processes, whereas the number
of occupied rows varies from SCS to SCS and the
maximal process number refers to the SCS with the
maximal row count. Fig. 6 displays the event
diagram with regard to the data flow example shown
in Section 3.1 i.e. Fig. 2 and Fig. 3 partitioned to
four processes. Here, the maximum number of
sequential nodes is bound to process1 by six nodes.

Scopel[6,5,3,3]

Sum1[5,5,3,3]

Sum2[4,3,3,3] Gain1[0,4,0,0]

time

Sum3[3,3,0,0] 0T

Gain5[2,0,0,0]

Gain3[0,2,0,0] Gain2[0,0,0,

Gaind[0,0,2,0]

Delay4[1,0,0,0] Delay2[0,1,0,0] Delay3[0,0,1,0] Delay1[0,0,0.1] @

process1 process2 process3 process4

Fig. 6 — Data flow correspondent event diagram
with four processes.

Fig. 7 displays the same program, but mapped
into three processes. Here, the maximum number of
SCS is increased to seven due to the fact that
process3 can not calculate Delay! at the third SCS
because of Delayl’s adjacent nodes to the sink. The
partitioning algorithm always assigns nodes to a
process according to the SCS and the node’s
adjacent nodes to the sink. Assigning nodes to
process3, the algorithm only detects Gain2 for SCS
three (fourth last SCS to sink), due to Delay! (being
the only unassigned node besides Gain?2) revealing
four adjacent nodes to sink and only nodes with
maximal three adjacent nodes to the sink are
considered. In this case the partitioning algorithm
stretches processes in order to assign the unassigned

nodes, i.e. inserting a new SCS at the corresponding
SCS step beginning with with first process that is a
new SCS preliminary to Sum3 in the example
shown in 7.

Scope[7,5,4]
Sum1[6,5,4]

Sum2[5,3,4]

Sum3[4,3,0] Rampl0,3,0] Gain2[4,0,3]

= Delay1[3,0,0]

GAinal20.0] Gain3[0,2,0]

Delay4[1,0,0] Delay3[0,0,1]

Delay2[0,1,0]

process1 process2 process3

Fig. 7 — Data flow correspondent event diagram
with three processes.

Having the nodes assigned to two processes, the
result looks like Fig. 8. Here, the maximum number
of SCS rises to eight due to two stretch operations
caused by Delayl and Gain2.

Scope[8,7]
Sum1[7,7]
Sum2[6,5]

Sum3[5,3]
Gain4[4,0]
Delay3[3,0]
Gain5[2,0]

time

Delay4[1,0]

Delay2[0,1]

process2

process

Fig. 8 — Data flow correspondent event diagram
with two processes.

The example shows, that a critical path described
in 3.2 with exactly one node from each SCS
connected via transitions initially forms the first
process. The partitioning algorithm is supposed to
determine the critical path, that provides the least
cost instensive calculation, for forming the first
process. Hence it uses multiple optimization criteria
i.e. minimal runtime, minimal cross process
communication and the precise parallelism degree
(number of processes constraint). In order to form
additional processes, already assigned events are
ignored and the farthest node from a sink is
identified and assigned to another process via a
depth first search (DFS). According to the following
node assignments to each SCS at a process, firstly
adjacent nodes (that provide a transition to the
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preceding assigned node) and secondly any other
nodes according to the specific SCS are considered.
In case neither a adjacent nor a node for the specific
SCS can be found, nodes from subsequent SCSs are
taken into account. In case the number of processes
is restricted by the user and the mechanism obtains
unassigned nodes, the partitioning algorithm is able
to stretch processes and insert unassigned nodes at
specific SCS steps in order to finally assign all
nodes. These assignment are processed with regard
to the node’s dependencies and execution cycles,
such that no order constraint is violated.

The previously described methodology has been
implemented in an approach called local graph
partitioning (LGP). The basic idea of LGP is the
assumption of at least one critical path within a
directed acyclic graph. This path represents a
sequential ordering that does not benefit from being
distributed or calculated in parallel due to each node
depending on previously calculated results. Mapping
such a critical path to different calculation units
would result in an increased calculation time due to
overheads produced by synchronization and
communication between the calculation units.
Consequently the critical path is assigned to the first
ProcessPrototype and all side paths, branches,
sources and sinks of the graph are calculated parallel
to that critical path in other ProcessPrototypes. The
amount of ProcessPrototypes, respectively the
number of actual parallel calculations, can either be
maximized automatically by the implementation or
specifically defined by the user. The partitioning is
able to identify the maximal number of nodes to be
calculated in parallel and creates ProcessPrototypes
correspondingly. Furthermore, in case the user
defines a specific number of threads, the partitioning
is able to stretch threads by inserting nodes at a
specific time slice between already assigned nodes
according to their distances to the farthest sink in
order to meet the user’s thread constraint. The LGP
mechanism shall be outlined by the following
pseudo code.

Initially, in lines 1 and 2, two sets are built,
containing unassigned nodes and all tasks.
Afterwards the critical path is determined, assigned
to the first task and all critical path nodes are
removed from the list containing the unassigned
nodes (U). The subsequent for loop (line 4) performs
the node to ProcessPrototype (task) assignment such
that other ProcessPrototypes contain graph branches
beginning with the runnable (node) that provides the
greatest distance to the critical path’s sink. In case
the number of ProcessPrototypes has been
automatically calculated, this assignment will cover
all occurring runnables. The second for loop (line 8)
assigns a node from the list that contains the
unassigned nodes (U) to each time slice parallel to

the critical path with respect to not violating any
order constraint. The subsequent while loop (line 24)
performs the node insertion process, that is activated
in case the user restricted the number of tasks to a
smaller value compared with the automatically
generated value. In other words, the loop will only
be executed in case there remain unassigned nodes
after the prior node to task assignment. The user’s
task number restriction causes each task to execute
more nodes such that the overall execution time will
be greater than the critical path’s execution time.
This stretching (execution time increase) is defined
by the stepincrease value (see Listing 1 lines 25-28).
The stepincrease value is calculated by the number
of unassigned nodes divided by the number of tasks
and incremented in case the division did not result in
an integer value. This ensures that all unassigned
nodes can be evenly distributed among the tasks.
E.g. if there are three tasks and five unassigned
nodes, the tasks one and two will be extended by
two nodes (5=3 = 1+1 = 2) and task three by
one node.

I | Let U denote the set of all unassigned nodes
2 Let T denote the set of tasks
3 Determine the critical path CP and its length CPL (number of

nodes) and remove the CP nodes from U

4 |FOR each task ¢ in T

5 Determine the farthest node to the next sink fan in U

fi Let NTSi denote fn's distance to the farest sink (critical
path sink)

1 Let NTSo0o denote fm's distance to the next source (critical
path source})

8 FOR each time slice s of CP in ¢ beginning with s=CPL

9 IF NTSi == s

10 select fu

11 ELSE IF there are multiple farthest nodes
12 Let fms denote all nodes in U providing the farthest
distance to sink

13 select fn of fms with highest NTSe

14 ELSE IF there is exactly one farthest node && NTSe <=
CPL—s+1

15 select fa

16 ELSE no node fits into current time slice —> empty slot

17 ENDIF

18 Assign selected node to t

19 remove selected node from U

20 set fit to either a connected node providing a distance to
sink = fnd—1 or to the node providing the farthest

sink distance
21 ENDFOR
22 | ENDFOR

24 | WHILE U is not empty
25 set steplncrease to Usize / Tsize

26 IF U.size modulo Tsize not equals 0

27 increase stepincrease by one

8 ENDIF

e FOR each steplncrease

an FOR each task ¢

1 IF U' is not empty

32 Determine the farthest node to the next sink fn in U
i3 Let fnd denote the distance to the next sink of fn
34 assign fn to t after fad

35 remove fn from U

6 ENDIF

7 ENDFOR

8 ENDFOR

319 | ENDWHILE

Listing 1. Pseudocode for partitioning algorithm

A feature that is not mentioned in the pseudo
code is the recognition of CPC (Cross Process
Communication). For instance if a runnable A
provides a RunnablePrecedence to a runnable B and
the runnables are assigned to different
ProcessPrototypes, specific model elements have to
be created as described in the introduction
(sectionI) ie. synchronization events and
sequencing constraints.
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Finally the LGP aprroach provides all system’s
runnables distributed among several
ProcessPrototypes (user defined or automatically
generated) as well as explicit CPC model elements,
that can be combined and transmitted to a mapping
plugin [14] for further information augmentation and
finally to a code generator in order to apply the
partitioning to the software and run it in parallel on a
multicore system. The partitioning mechanism
processes runnables (nodes) with respect to their
dependencies (orderings) and execution cycles and
utilizes multicore architectures by efficient
parallelism and load balancing such that execution
times and energy consumption can be lowered and
high performance application development can
be facilitated.

3.5. PARTITIONING EVALUATION

In [10] two several similar approaches to DFG
partitioning are introduced with respect to node’s
earliest and latest initial times respectively node’s
runtime or calculation cycles. However the
particular number of processes constraint is not
considered i.e. merging untreated nodes into existing
processes. Due to strictly forming and not changing
the critical path, the partitioning in [10] is ineffective
according to calculation intense multiple propagated
nodes in combination with a process amount
constraint. Hence the proposed DFG partitioning in
this paper benefits from parallel constraint
consideration. Fig.9 shows a)a DFG and
correspondingly in b)a pipeline partitioning, in
¢) the partitioning from [10] and in d) the proposed
partitioning of this paper for two processes
(indicated by the lower row as processl and the
upper row as process2). The dashed arrows indicate
process wide communication. The pipeline
partitioning ~ features  most  cross  process
communication due to not considering any
dependencies. The c) partitioning features the
critical path in processl but increases the overall
SCSs due to not being capable of stretching a
process. The presented partitioning approach of this
paper is shown in d) and provides both a low SCSs
amount as well as low cross process communication.
The presented partitioning reveals a simple structure
whereas industrial applications feature much bigger
DFGs such that the partitioning provides more
significant benefits for parallelism.

Several literature emphasizes on reducing
communication overhead like the region partitioning
approach [15] or min-cut partitions [16] or
distinguishing  between control-, data- and
dependence transitions [17] via specific complex
mechanisms whereas the presented approach of this
paper focuses on simplicity and an efficient

automatic load balancing for practical issues in early
development phases.
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Fig. 9 — Comparison of DFG partitioning.

4. PERFORMANCE OPTIMIZATION
THROUGH TRACING

The next step after the efficient and causal
correct partitioning, is addressing and revealing
more convoluted problems like race conditions,
errors, ineffective patterns and dynamic behaviors
by considering system parameters like architecture
properties, scheduling paradigms, signals, runnables,
processes or threads and corresponding timing
properties. This can be handled by storing relevant
system activities during execution of a physical or
simulated system by using a extended trace API, that
specifies the trace format. An additional program is
supposed to read and analyze the trace data, that has
been recorded during the system’s execution.

The AMALTHEA project takes advantage of two
major types of evaluation applied to the trace data,
the metric calculation and the Gantt visualization.
The metric calculation determines response times of
a task or the duration of event chains for instance.
All these metrics have in common that certain
actions of specific entities are required for
calculation. The response time of a task for example
requires the actions activated and terminated from
the related task. Another example is an event chain
which consists of a write access of a task 4 and a
read access of task B. This case requires the
collection of both tasks’ related events.

The evaluation types require both dynamic
system behavior exploration and dynamic system
behavior comparison. The dynamic system behavior
exploration allows the determination of system
characteristics during execution of the system by
tracing system environment or system parts
interaction. It provides system behavior, resource
consumption, safety related activities and the
generation of the system’s model. The dynamic
system behavior comparison provides quantifying
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differences between modeled and physical systems
at different development phases (architectural
design,  functional  design, implementation,
verification) in order to improve the abstract
modeled system.

A vector clock extended trace intensely improves
handling simulation, inferential performance and
error analysis due to abstraction via virtual time and
no need of global clocks respectively the timestamp.
Furthermore, tracing execution time for software
elements facilitates the partitioning activity by
detecting relevant execution time differences for the
same SCS. Knowledge about execution times for all
nodes improves the load balancing via assigning
appropriate nodes to empty time slots at different
SCSs (before a cross process synchronization or data
exchange for instance). Besides vector clocks the
new trace approach features various information like
the timestamp, its resolution, a configuration section
for comments, optional parameters, creator and
format version, the event type, a trace merge field, a
memory access field, a memory protection usage
field, the recording’s precision, the unique event
identifier, an instance field and provides pre-
defining the data set to be logged.

Having all this information, one can gain
absolute knowledge about a system’s execution
respectively use key information in order to
evaluate, improve, and optimize a system. This
especially concerns performance analysis according
to preserving the temporal and spacial relationships
of events, gaining information about using limited
resources more efficiently or increasing scalability
for bigger simulations. Vector clocks in this context
facilitate causality relation determination and
constitute a way of replacing expensive timer
modules as well as combined with the described
trace data, provide the detection of inadequate states
during runtime in contrast to debugging, that stops
the system at specific breakpoints.

5. CONCLUSION

The proposed new partitioning mechanism
combined with both the tracking and the tracing
approach, provide a fine grained parallelism bound
to a causal correct and optimized software
development, focusing on efficiency and optimized
performance for modern distributed systems.

The novel tracing approach helps users to reveal
errors, problems and conflicts, improve system’s
performance, utilize limited resources more
efficiently and facilitate development processes in a
wide field of software domains. Compared to most
commonly used trace formats, the described
approach meets modern demands, constraints and
requirements of distributed systems according to

hard- and software issues such as memory accesses,
cores, frequency or semaphores and timing metrics.

The comparison of various partitioning
approaches reveals, that the proposed mechanism is
capable of constraints and still preserves minimal
runtime (number of SCSs) and minimal cross
process communication in order to utilize parallel
resources optimally. Various adaptions such as
communication and computation cycle handling
influences the mechanism and enables minimizing
synchronization costs or waiting periods.

Applying the promising concepts to a program,
the user benefits from an automatic partitioning and
the assignment of execution units to any number of
processes resulting in an optimal load balancing
across processes and a trace, providing all necessary
information for commonly used analysis or
evaluation tools.
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Abstract: Both grid and cloud are used to organize large scale calculations and data processing on remote computers.
Grid which became a basic computing infrastructure for the Large Hadron Collider experiments provides unified
technical solutions for sharing and merging distributed heterogeneous computing resources within big collaboration
groups. Cloud became popular among data centers and computing service providers because of flexibility,
manageability and efficient hardware utilization. Both share common ideology “computing as a service”, so one can
expect additional benefits from their integration. The paper describes our approach to the integration. We propose to use
cloud within grid sites for acceleration of application deployment and easy support of multiple virtual organizations by
grid sites. The cloud in grid approach has been implemented and tested in Ukrainian National Grid, a part of European
Grid Infrastructure. Copyright © Research Institute for Intelligent Computer Systems, 2013. All rights reserved.
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1. INTRODUCTION

Grid concept, architecture and middleware were
developed by lan Foster, Carl Kesselman and Steven
Tuecke [1] since mid 1990th. But the wide
application and popularity of grid in scientific
calculations have been initiated by grid
implementation of the Large Hadron Collider (LHC)
data processing [2]. Instead of building a huge
computer center to store and process 15 petabytes
LHC data yearly [3], it was decided to organize their
world-wide distributed storing and processing by the
international  collaborations of high energy
physicists. The developed grid infrastructure and
middleware appeared so powerful and flexible that
many other researchers started to use it for their
scientific calculations. European grid was organized
in European Grid Infrastructure (EGI) and integrated
with many national grids both within and beyond
Europe [4].

Grid implements a paradigm of High-Throughput
Computing (HTC) different from the High-
Performance Computing (HPC) associated with
parallel calculations [5]. When HPC targets minimal
execution time for a job, the HTC aim is maximal
utilization of all available computer performance to
run multiple jobs or to solve a very big problem by
parts. When a grid task is subdivided by subtasks the
last ones are executed by different grid-sites

according to their internal rules and queues without
any guaranties of simultaneous run. It is the essence
of distributed computing. Certificate based
authorization, LDAP based resource catalogues and
run environment specification languages create
technical basis of grid.

Cloud proposes on-demand hardware usually
with the pre-installed software. By sharing hardware
of big datacenters cloud reduces the operational
costs per task and increases efficiency of the
hardware usage for the task flow [6]. It increases
elasticity in environment selection and system
mobility [7]. Typical requirements to cloud have
been formalized by Peter Mell and Timothy Grance
in [8]. Cloud providers offer virtualized
computational resources with service-oriented
provisioning and support “pay as you go” usage-
based pricing model. The last feature is important
for commercial clouds such as Amazon EC2,
GoGrid, FlexiScale, and others.

In theory cloud gives the illusion that unlimited
computing resources are available. Users can
request, and are likely to obtain, sufficient resources
at any time. In practice the illusion may be broken
for large workloads or if the task is
resource-dependent.

The users are allowed within both grid and cloud
to acquire and release resources on-demand.
Therefore, as the needs of the workflow change over
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time, the releasing of the resources enables the
workflow systems easily to grow and shrink their
available resource pool. But specification of the
requested resources in grid is implemented via its
parameters. As the resource description is
incomplete, the allocated nodes can be different, and
nobody can guarantee their compatibility with the
program. Cloud exposes resources with identical
pre-installed system environments.

Cloud excels grid in benefits for workflow
applications. Cloud applications are distributed in a
common unified system and so can efficiently share
data and exchange messages. Grid application sub-
tasks can be separated both geographically and in
time, so communication between them is tricky.
Furthermore, cloud enables remote access to the
allocated nodes, and thus supports on-line user-
directed operations such as dynamic visualization.

Cloud can simultaneously run different
operational systems on the same physical servers. So
it provides more opportunities to combine
independent software in solution of complex
problems. E.g., data computed by a 32-bit Linux
program can be than visualized in 64-bit Windows
application within a common workflow.

Both grid and cloud propose ready to use
computing environments on demand [9]. But cloud
is less scalable and grid is less flexible and requires
more administrators’ efforts to fit contradictive
system  requirements of  multiple  virtual
organizations. This is why integration of grid and
cloud is in focus of modern researches.

The simplest kind of the integration is merging
multiple geographically distributed computers in a
single cloud based grid-site. Such way is proposed
by the project “Experimental Deployment of an
Integrated Grid and Cloud Enabled Environment in
BSEC Countries on the Base of g-Eclipse” started
in 2013 [10]. The project approach, however, is poor
suitable for HPC tasks which need high performance
parallel computations and use grid primary as a
common access point to multiple clusters. However
such approach can give more utilization power for
big number of old hardware that can be used to
virtualize nodes for some sorts of power HPC tasks.

More general approach is developed within the
EGI-InSPIRE project established a Federated Cloud
Task Force [11]. Some EGI grid-sites are already
offering private cloud services for local research
organizations. The project helps to unify their cloud
architecture. Every site of the EGI Federated Cloud
exposes the same programming interfaces for virtual
machine setup and data manipulation operations,
therefore applications that are built for one site of
EGI Federated Cloud can run at any of the EGI
cloud sites. In other words the EGI Federated Cloud
provides an extensible set of reusable virtual

machine (VM) images from the EGI VM
marketplace. The images contain installed and set up
scientific programs. The approach supposes
complete virtualization of the EGI Federated Cloud
grid-sites, which can decrease their HPC
performance and prevent use of non-virtualized
hardware (e.g. non-virtualized GPU accelerators).
Besides, the whole grid resource pool is subdivided

by two parts of cloud and ordinary
grid-sites (Fig. 1).
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Fig. 1 — The EGI Platform Architecture.

Our idea is slightly different. We propose to run
virtual machines as ordinary grid tasks and manage
them similarly by grid tasks [12]. As result grid
tasks can be run either in virtual or in physical
environment. Thus routing problem solution can be
accelerated by special efforts of either grid site or
virtual organization administrators who install the
necessary application software on physical servers.
At the same time, a user can immediately run a
special program version or configuration without its
preliminary installation on multiple target grid-sites.
He can easily add the preinstalled or own software to
virtual machine, too. If the task is still running he
can add some configuration issues to the virtual
machine OS. Each user has its own set of virtual
machines. In more restricted environment the
administrator can control the list of available virtual
machines for security reasons. If there is no
appropriate template of virtual machine in
repository, user can contact administrator and
provide a preconfigured template.

In such architecture the cloud platform can be
used also for secure testing the new software.
Besides, it creates ability to allocate some resources
for their online use (without queue) during the
virtual machine grid task lifetime. Moreover there is
an ability to make a shared access to some devices,
that are installed on hypervisor i.e. accelerators,
additional storage devices, cache etc. Such
capability is absent in classical grid.
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2. INTEGRATED PLATFORM
ARCHITECTURE

The proposed integrated platform consists of
3 levels (Fig. 2):

1) the grid middleware responsible for the job
delivery to appropriate clusters, for the data transfer,
and for the user authentication;

2) the cluster scheduler responsible for the job
queuing and distribution its subtasks between the
cluster nodes;

3) the cloud platform software responsible for
managing the private cloud as the cluster

virtual part.
Grid i’?‘l%.l
1
Cluster il
|

Fig. 2 — The cloud platform integrated
in the grid infrastructure.

]

The grid user generates a proxy-certificate for an
appropriate lifetime period, creates the job
specification as a file (e.g. in the XRSL format) and
launches the job using the grid submit command.
The grid scheduler directs the job on a proper grid-
site according to the job resource specifications. If
the job specification contains links to files, grid
automatically downloads them from user’s local file
system, FTP, HTTP, the grid storage or other place
and puts them to a folder or a block device which is
shared to the virtual machine file system. The cluster
scheduler accepts the job, inserts its command into
the queue and runs according to the queue rules. The
integrated cloud platform does not affect the

grid workflow.
Since the virtual systems need unified path to the
input files, the calculation results, and the

intermediate files which are download/uploaded by
the grid middleware during the job submitting, the
integrated platform is based on the unified storage
structure rules. Within the Ukrainian National Grid
(UNG) [13] all grid application files are managed
according to the next rules:

» ceach grid user accesses UNG resources only
under a certificate associated with a Virtual
Organization (VO);

* each VO has its own directory in the
grid storage;

* the filenames of system files and folders in the
VO directory are started from dot (to be invisible
for users);

* each VO directory contains system folders
“apps” and “.cloud” for user applications and
backups of the system images;

» other subdirectories of the VO directory are
shared to all members of the VO.

The cloud platform main unit called instance is a
virtual node of the cluster. Each instance is created
from one of pre-installed VM images. The instances
are managed by users and VO administrators via a
set of cloud management commands. The commands
can be submitted as ordinary grid jobs, according to
usual grid and cluster security rules and restrictions,
which can deny wusers direct access to the
virtualization system. The cloud management
command set is supported by management
components, the core of the integrated
cloud platform.

Among them there is a routing service which
opens a certain port for remote access to the instance
through Remote Desktop Protocol (RDP). This is a
key to extension of traditional grid functionality by
dialog user interface capabilities. RDP remote
desktops can be used from personal computers and
mobile devices such as smartphones or tablets.
Besides, RDP simplifies downloading/uploading
files during the instance lifetime. (This is important
for long time executed dialog programs, as the
traditional grid tools wait for a job finis to download
its results.)

Speaking more, the management components
create the most important part of the intermediate
layer between the private cloud and the grid. Other
necessary parts include a virtualization server and a
database of VM images & instances, constraints, the
virtual network settings, the software licensing
information and so on (Fig. 3).

Cloud managment components
(set of commands)

Database

Server of virtual resources
Virtual

N

L—

Fig. 3 — Intermediate layer between the cloud platform
and the grid.
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The list of cloud management commands for VM
control in the integrated grid infrastructure includes:

* VMmanager to list the images, to list, create,
start and shutdown the virtual nodes;

* VMRunApp to execute a user command
within an instance (on the corresponded
virtual machine);

* VMRegisterApp to install an application in
an instance;

* VMDBCreate to test the system, create
and restore the cloud platform DB. (The
command permissions may be restricted to
administrators only);

* VMAddImgTpl to manage the instance
templates which relate the instance parameters to the
physical node parameters.

View the list of instances

S no

VMmanager list images
View the list of images

v

VMmanager create <image
name> <instance name>
Create the instance

VMmanager list instances ]

ye

\ 4
no

Started?

-

yes VMmanager run
<instance name>
Start the instance

VMRunApp <instance name> <task
name> <options>
Start the task with parameters

v

VMmanager shutdown <instance
name>
Shutdown the instance

Fig. 4 — Cloud management commands in use.

The cloud management commands application
can be illustrated by the next scenario.

At first, the user inspects the list of the available
instances by VMmanager. If the requested instance
is not running, it can be started by

VMmanager run <instance name>

After  successful instance
the command

VMRunApp <instance name>

<task name> <parameters>
is called to run the task with parameters on the
specified instance. In order to free allocated
resources, the instance can be stopped by
VMmanager shutdown <instance name>
If the requested instance is absent it can be created
from an image. The list of images can be retrieved
by VMmanager list images. The new instance is
created by
VMmanager create <image name>
<instance name>

The cluster administrator can call management
commands for managing templates and cloning
images. The whole scenario can be described as one
grid script for the integrated cloud platform (Fig. 4).
After the script is started the user is allowed to
acquire additional connection options (like RDP
address, port, user and password) calling the status
command from grid utilities.

launching the

3. INTEGRATED PLATFORM
IMPLEMENTATION

Core components of clouds are VM hypervisors
which host all the VM instances. The integrated
platform accesses hypervisor via the opensource
toolkit libvirt [14]. This library acts as a middleware
between hypervisor and cloud management
components. It is compatible with most popular
hypervisors, supports recent Linux versions and
provides modern set of virtualization capabilities:

* management of virtual machines, virtual
networks and storage;

* portable client API for Linux, Solaris and
Windows;

* remote control with authentification and
encryption;

* unified management of multiple hypervisors
from one access point;

* a driver-based architecture and common
hypervisor-independent API;

» integrated services: HTTP, DHCP server,
VPN, SSH, built-in shell.

The recommended VM hypervisor tested in our
platform is Oracle VirtualBox [15]. The choice was
motivated by its low resource consumption, fast
configurability, multi-system VM (Linux, Windows
and MacOS), and parallel run of multiple VM
containers. The licensing policy favorable for
Academia also affected the decision.

Special efforts targeted user authorization and
authentication in the integrated platform. It is
important to keep the extended access capabilities
within the standard grid rules and use nothing but
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the time-limited proxy-certificates of grid users. The
proposed solution is based on the proxy sharing via
Myproxy Credential Management Service [16]. It
combines the online credential repository with the
online certificate authority, and allows users to
obtain securely credentials when and where needed.
The system is configured to encrypt all private keys

ACMS Main

Cluster Management System 000 1as admin in VO

medgrid

in the repository with user-chosen passphrases and
server-enforced policies for passphrase quality. The
technique also provides delegation of the credentials
from one user to another without using certificate
files and its passphrases.

To put the integrated platform in operation the
web user’s interface (Fig. 5-7) has been developed.

Tasks
Ne Name Time start THIES State Action
end
2013-11-13 =
1 VLADF-TEST-10 19:13:16 Started | View | Connect | Stop
: 2013-11-21
2 medgrid_20131121002251 02:22:56 Stoped Start | Delete

Fig. 5 — Web interface of the integrated platform.

VLADF-TEST-10
P

I

Fig. 6 — Windows XP run as a VM task on Linux cluster via ARC grid middleware.
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Fig. 7 — Seismic modeling program Tesseral Pro for Windows executed in grid in the integrated platform
and available from the web interface.
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First end-user experience of application the
integrated platform in VO “Medgrid” [17] and
“Geopard” [18] resulted in improvements and
development of additional functions:

1. Delayed start of grid tasks. The grid tasks
related to cloud management are submitted in
background to unfreeze the task manager during the
long enough procedure.

2. Accelerated work with remote grid storage.
Virtual copy of the VO folder directory is stored in
database. In addition to acceleration of usual
operations it helps to synchronize or re-install local
storage. Current recovery speed for all directory

structure is about 1000 files per minute.
The synchronization tool is run periodically
in background.

3. Cache of VO user certificates was added to
web interface. This function allows to read statistics
and to communicate with other VO members
without generating proxy certificates. (Access to
grid is not possible.)

4. PHP API for ARC implementation of the
integrated platform with basic functions of
monitoring, submitting, interruption and deleting
tasks, file operations in grid storage.

5. Web interface API for remote administration
of the web interface allows easy integrate the
solution in another management system.

4. CONCLUSION

The offered integration approach unites the
principles of both grid and cloud computing. The
described implementation of the cloud platform
integration in grid-infrastructure has been tested and
applied in operation within Ukrainian National Grid
which is an integrated part of EGL. UNG is partially
based on ARC middleware. But the approach is
suitable for glLite and EMI grids as well. The
developed set of commands is sufficient for flexible
command line interaction with the integrated in grid
cloud platform. Main advantages of the proposed
solution are:

1) quick deployment of new or alternative
program versions within VO, less administrator’s
efforts,

2) arbitrary mix of grid and cloud/grid tasks on
the same clusters,

3) dialog and on-line environments run in grid for
immediate user’s operations (to exclude delays for
submitting and re-submitting grid tasks),

4) automated data flow and distributed storing.

5) Linux/Windows portability,

6) tolerance to differences in operational
environments and VM hypervisors of different grid
sites.
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Abstract: Multi-core CPUs offer several major benefits in embedded systems. For instance, they usually provide higher
energy efficiency and more computing power compared to single-core CPUs. However, these benefits do not come for
free: A program has to be divided into tasks, which can be executed in parallel on different cores. Partitioning of
software and mapping on cores are nontrivial activities that require detailed knowledge about the underlying hardware
platform, e.g., the number of cores, their speed, available memories, etc. Such information is typically stored in
handbooks. If this information would be available in a machine readable model, we call it hardware model, the
partitioning and mapping activities can be automated. In this paper, we propose a hardware model and illustrate it using
an example of a Freescale multi-core CPU. We then discuss a small case study situated in the automotive domain,
which illustrates the use of the hardware model in partitioning, mapping, and code generation. Copyright © Research
Institute for Intelligent Computer Systems, 2013. All rights reserved.

Keywords: Multi-core; hardware model; embedded systems software development; target mapping; model-driven
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1. INTRODUCTION

The demands on mobile and embedded systems
are ever increasing. Mobile phones offer strong
multi-media capabilities and, for instance, embedded
systems in cars implement image recognition to
analyze radar images of traffic in an adaptive cruise
control. Mobile and embedded systems benefit in
several ways from multi-core CPUs. These CPUs
provide more computing power at the same clock
speed resulting from several cores working in
parallel. They provide better energy efficiency
because they run on a lower clock speed compared
to a single-core with the same computing power and
cores may be switched off if their power is not
needed. Furthermore, multi-core CPUs allow for
high-assurance systems by running two cores
redundantly in a so called lockstep mode.

A program which utilizes the benefits of a multi-
core CPU has to be divided into a set of
communicating tasks, which can be executed in
parallel without blocking each other because of
synchronization on shared resources. In order to find

! The research leading to these results has received funding from the
Federal Ministry of Education and Research (BMBF) as part of the
AMALTHEA project.

an optimal partitioning and mapping, hardware-
related information must be taken into account. A
trivial example is the number of cores, more
advanced information includes the type and speed of
shared memories.

Such information about a CPU is typically stored
in large processor handbooks. If hardware
information would be available in a machine
readable model, we call it hardware model, the
partitioning and mapping activities can be
further automated.

In this paper, we propose a hardware model
which is rich enough to describe systems of
heterogeneous multi-core CPUs as well as peripheral
hardware. The use of the hardware model in
partitioning and mapping is shown in a case study.
Additional application for code generation is
outlined. Furthermore, we provide an example of a
hardware model for a Freescale MPC5668G multi-
core SoC popular in the automotive domain.

This paper is organized as follows: Section 2
discusses the related work. Section 3 outlines the
hardware model and the example model is shown in
section 4. The main part of this paper is a case study
on how hardware models support partitioning,
mapping, and code generation, followed by a simple
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Yakindu DAMOS’ based example illustrating the
respective steps of the case study for an automated
partitioning and mapping of automotive software in
section 6. A conclusion and directions for future
work close this paper.

2. RELATED WORK

The idea of utilizing models to support particular
steps of development has been pursued for years.
For instance, the probably best known application of
hardware models is hardware synthesis, which
allows transforming a given formal description of
hardware into an implementation. This topic is being
performed and researched since decades and lead to
the introduction of several hardware modeling
languages, such as SystemC, VHDL, SystemVerilog
etc. [1] and tooling which utilized these languages.
Hardware models usually describe the structure and
behavior of hardware at a high abstraction level e.g.
in terms of register-transfers (VHDL). The true
hardware models used by the chip manufacturer for
hardware synthesis are considered as intellectual
property (IP) and thus usually not publicly available.

Hardware models with an even higher abstraction
level have been described in EAST-ADL [2] and
AUTOSAR [3]. They are wused within the
development of automotive embedded systems and
support preliminary allocation decisions and the
configuration of micro controllers. Compared to
these types, we need a hardware model which is
located in between: Common hardware description
languages like SystemC are still far too detailed to
support our cases, and important implementation
details, like the cycles per second, are yet unknown.
On the other hand, AUTOSAR and EAST-ADL are
not specialized enough to provide the required
amount of information.

An algorithm for the automatic partitioning and
mapping of embedded software for a homogenous
multiprocessor system has been described, among
others, by Cordes et al [4]. It is based on integer
linear programming and utilizes a model of the
hardware platform with information of its
communication and task-creation overheads. Our
hardware model targets to support algorithms for
heterogeneous multi-core system partitioning and
mapping, hence much more hardware related
information is required. This includes, but is not
limited to, the specification of unique characteristics
of the cores, e.g. a FPU, as well as additional
constraints which will restrict mapping decisions.

Our previous publication [5] is dealing with the
partitioning and mapping for heterogeneous multi-
core systems using a hardware model. It outlines a

* http://blog.yakindu.org/category/damos-2/

pragmatic approach for partitioning and mapping of
data flow graphs with a simple algorithm. In this
paper, we seek to determine the optimal allocation of
tasks to cores in due consideration of allocation
constraints. As such, we need a more versatile
approach, e.g. integer linear programming, which
has to be supported by the hardware model.

3. HARDWARE MODEL

The purpose of our hardware model is the
support of embedded systems development in
general, i.e. regardless of the embedded systems
field of application (automotive, mobile, ...).
Common steps within this procedure are usually
partitioning and mapping of embedded software as
well as code generation. One of our goals is to
provide compatibility with AUTOSAR, which is the
current standard in the automotive domain.

The meta-model of our hardware model is shown
in Fig. 1. Classes shown in the upper left corner
represent the three main hierarchies of elements that
may be modeled: Components, Ports and Pins. This
structure is oriented at AUTOSARs ECU Resource
Description and allows a direct mapping between
both models elements. Classes in the upper right
corner represent the data-types additional attributes
of the elements may take (e.g. Boolean, Integer,
Long, ...). Classes in the lower left corner represent
the extensions that have been made to enhance the
amount of information compared to AUTOSARs
ECU Resource Description and as such allowing us
to utilize the model beyond the automotive scope.

We introduced a hierarchy for descriptions up to
system level, allowing describing a system of ECUs,
each consisting of an unbound number of System-
on-Chips (SoCs) which may contain multiple cores.
Each element may operate on a different frequency
which is described by a Prescaler and its referenced
Quartz. The Memory class is used to describe any
type of memories on different hierarchies, e.g. a
cache as well as RAMs or ROMs. The Network class
is used to span a network which is accessed through
ComplexPorts. This allows deriving a memory map
out of the hardware model which supports the
detection of concurrent access to any type
of component.

4. HARDWARE MODEL EXAMPLE

One of the domains which favors the usage of
heterogeneous multi-core CPUs is the automotive
domain, which is the reason why our example
focuses on this branch. Yet the hardware model
itself is not limited to this domain.
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Fig. 1 - EMF based meta-model describing the hardware model.

The simplified hardware model based on the
heterogeneous Freescale MPC5668G multi-core
SoC is illustrated in Fig. 2. In this figure, blocks in
the upper row represent hardware components with
master access on the network while the blocks in the
lower row indicate slaves. Networks on the SoC
which are referenced by Ports (white rectangles) and
peripheral elements are represented by blocks in the
mid row.

Freescale MPC5668G SoC | | Component

Ethemet
Controller

gr—

AMBA Crossbar Network Read delay: 2Clk
Simultaneous connections: 6 Wirite delay: 2dk
Max. bit width: 64 8 S| Bit width: 32
m Address Range:
0x0000_0000h —
OxDFFF_FFFFh

Read delay: 3dk
Bit width: 64
Address Range:
0x0000_0000h —
OxIFFF_FFFFh

Fig. 2 — Simplified illustration of the MPC5668G SoC
hardware model.

The Freescale MPC5668G SoC contains two
heterogeneous cores. The main core is the €200z6,
which operates at 116 MHz, has 32KB L1 cache and

supports floating-point computations. An additional
€200z0 core, operating on half the €200z6
frequency, is available as I/O processor. The
memory consists of 2MB flash and 592kb RAM
which is split up into one 512kb and one 80kb
module to allow concurrent access by the masters.
The network, which is provided by the AMBA
Crossbar Switch, allows up to 6 concurrent
connections from masters to slaves with up to 64 bit
width. Further interfaces, like I2C and SPI, can be
accessed through an AIPS Bridge.

5. USAGE OF A HARDWARE MODEL IN
PARTITIONING AND MAPPING

The case study within this paper targets at the
hardware model support of the steps which are
required to partition and map software to multiple
cores and generate target specific ready to compile
code. To achieve this, we follow Fosters PCAM
methodology for designing parallel algorithms [6].
His methodology specifies the steps partitioning,
communication analysis, agglomeration, and
mapping. Code generation follows Herrington [7].

5.1. PARTITIONING

The first step is the decomposition of software
models, which involves to determine the task
granularity and which computations should be part
of a coherent set. According to Foster, this step is
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intended to reveal parallel execution opportunities of
a problem by partitioning it into fined-grained
decompositions, providing the greatest flexibility for
parallel algorithms. However, it should be avoided
to replicate data or computations, e.g. both should
form disjoint sets.

This step requires information about peripheral
elements with their base addresses and address
ranges (e.g. a memory map). This allows
determining which addresses belong to one specific
periphery and which tasks can be merged (as they
address the same piece of hardware) or split (as they
access different/independent entities of hardware).
Based on this information, a partitioning and
mapping algorithm is able to analyze software
models in consideration of a specific target platform
and to decompose tasks in a target
optimized manner.

5.2. COMMUNICATION ANALYSIS

The second step is the communication analysis.
Once a model has been partitioned into tasks, data
dependencies between the respective tasks will have
evolved. For instance, a former coherent process
might now be split up into multiple processes, with
each of them depending on the results of the
respective other process.

In communication analysis, such dependencies
are identified and the inter-task communication as
well as its cost is analyzed. This step has two phases:
The first phase involves the definition of a channel
structure. Each channel links two tasks and allows
the communication between tasks that require data
and the respective possessors of these data. In the
second phase, the messages which are being
communicated on these channels are derived
and defined.

To support this step, we need information about
data type implementations. As it is well known, the
size of data types usually depends on the target
operating system and compiler. For instance, data
types like long, double and int may have several
valid implementations which differ in their size and,
as such, affect the communication overhead.
Depending on the concrete implementation, the
number of transferred bytes by an int type variable
may vary between 2 and 8 bytes.

5.3. AGGLOMERATION

After an initial set of tasks has been specified and
communication dependencies between these tasks
identified, it is required to agglomerate the tasks into
greater task sets. In the agglomeration stage previous
decisions are revisited and the tasks further
optimized towards a parallel platform. This may be
achieved by simply merging decomposed tasks into

one or more greater tasks, for instance, if the tasks
have a too fine granularity for a specific underlying
hardware platform with a high task creation
overhead. Another aspect in the agglomeration step
is the replication of computations and data.

To support this step, information about the
number of cores, the communication channels and
available memories as well as processor cache are
required. An agglomeration algorithm will consider
cache sizes that will have a significant impact on the
decision if data replication should be applied or not.
Furthermore, the available capacity of the
communication channels of a specific target
platform steers the granularity of the agglomerated
tasks, e.g. slow channels favor fewer tasks while a
high-speed on-chip network could handle even many
tasks of fine granularity.

5.4. MAPPING

The mapping step consists of the allocation of
software model parts to elements of a hardware
platform. The purpose of this step is to specify
which task should run on which processor of the
target platform, providing the target platform is a
multi-core  system  without automatic task
scheduling. The goal of the mapping algorithm is to
minimize the execution time by:

- Increasing concurrency, i.e. distributing tasks

on different processors.

- Increasing locality, i.e. arrange tasks which
communicate frequently on the same
processor.

Our hardware model contributes towards this
with specific information about cores and their
parameters, such as frequency, their target
application etc. In addition, a generic possibility to
define constraints is provided, as these take a vast
variety of options, such as the maximum number of
processes, required instruction sets or safety-
constraints.

The communication between execution units is
the second aspect which has to be taken into
account. Naturally coherent computations may only
be distributed between interconnected executional
units. Additionally, the communication paths
between these units may contain several constraints,
prohibiting several constellations. It is essential to
know these as well as the capacity of the routes. To
achieve this, our hardware model provides basic
information about the complete network structure of
the target system, regardless of the abstraction level
its implemented (e.g. network of embedded systems,
one specific embedded system or merely a SoC. /
micro-controller). The information contains details
about any type of map-able network on an abstract
level (e.g. the networks speed, address space,
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scheduling policy etc,) as well as what participants
are connected to it. In addition, a generic structure
for further constraints is allowing an optimized
mapping, e.g to ensure reliability by
safety constraints.

5.5. CODE GENERATION

The final step is code generation for a specific
target. Having the tasks and their mapping specified,
all required information for a code generator is
available and code generation may be performed.
Our scope is to develop ready to compile code for a
specific hardware, also known as platform
dependent code generation.

Two approaches for code generation are
available. The first approach is code generation for
abstract interfaces. Usually an API for the access to
the underlying hardware platform, e.g. a Hardware
Abstraction Layer (HAL), is introduced and code
utilizing this API generated. However, this approach
has several downsides. On the one hand, the
complexity of the API to be implemented has to be
estimated. An API with little functionality may be
realized very fast but will lack in efficiency and/or
flexibility. On the other hand, an implementation
with a wide scope of functions will be time
consuming and only be worth if the platform is used
in multiple projects. A tradeoff between these
granularities has to be predicted, which is not
always possible.

Parameterization of the code generation is the
second approach. Here, rules and/or templates are
used to customize the code generator for a specific
target platform. Templates may be further refined
with macros which are replaced by additional
hardware related information or code. As it may be
considered that the code was transformed correctly,
it is unlikely that further maintenance operations by
users are necessary. This allows mixing application
specific code and target platform specific code,
permitting the compiler to perform common
optimization techniques. Usually a typical compiler
includes a mixture of both approaches, i.e. has
several parameterized parts and accesses manually
written platform dependent code through a
specified interface.

Regardless of the actual approach, the amount of
information to support this process is the same.
While attributes of certain elements (e.g. ports and
pins, registers and memories, data path addresses
etc.) provide structural information which is
replaced by the code generator, code templates
and/or snippets allow to complete more challenging
tasks, like the initialization of specific controller or
even implement the hardware dependent layers of a
messaging protocol with its according functions.

6. CASE STUDY

This section briefly describes the experimental
environment for an integer linear programming
(ILP) based approach for partitioning and mapping
software for an embedded system utilizing the
hardware model. A more detailed description of the
resp. steps within the tool flow is given by the
following subsections. The software is represented
by the Yakindu Damos data flow model in Fig. 3
which describes a simple cruise control unit.

b "‘;,_..;;:_';H.—'@l -

DesiredValue T

(v

ActualValue

Fig. 3 — Example Data Flow Model

The structure of the steps which are performed
with the tool chain in our experimental environment,
which has been developed and implemented within
the itea2 project AMALTHEA, is shown in Fig. 4.

Its first tool is the hardware aware partitioning
tool, which will perform the steps partitioning (a)
and communication analysis (b) with regard to a
chosen hardware platform and pass the resulting
model to a so called graph partitioning tool. This
tool will divide the graph into smaller sub-graphs,
which technically equals the agglomeration (c) of
smaller executable units into tasks (i.e. each sub
graph represents one task). The next step is the
mapping (d) which is performed by an ILP based
mapping tool. In the final step, two code generators
produce the target platform code (e).

6.1. PARTITIONING

Yakindu DAMOS is capable of extracting a so
called Execution Graph (i.e. a cycle free graph of the
Data Flow Model) which serves as input for our
approach. This model has already a very fine
granularity, therefore we are able to skip any further
decomposition of the model and focus on splitting
and merging blocks which are wusing shared
hardware components.

In this example, the blocks Desiredvalue and
ActualValue are reading data from the I2C and
SPI interfaces. As shown in the Freescale
MPC5668G SoCs hardware model (Fig. 2), these
interfaces are located behind the AIPS Bridge,
therefore it is wise to merge them in order to reduce
overheads which might occur by task creations or
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context switches and prevent mutual exclusion (Fig.

4(a)).
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Fig. 4 — Partitioning and mapping approach.

6.2. COMMUNICATION ANALYSIS

The communication cost of the model can be
determined by the number of data transfers between
the blocks and their respective data type size. As
usually several operating systems are available for a
specific hardware, the information about the
concrete implementation is stored in tables that are
attached to the hardware model. This allows to
calculate the communication cost and enhance the
edges of the execution graph with these values (Fig.
4(b)), providing the required information for the
following steps.

6.3. AGGLOMERATION

The agglomeration is performed by a graph
partitioning algorithm based on vector clocks (see
[8]). This algorithm is implemented in a graph
partitioning tool which merges the Blocks from the

DFG model into larger groups of tasks. The
hardware model supplies information about (i) the
maximum number of simultaneously executable
tasks (i.e. cores, threads per core, ...) as well as (ii)
the task creation overhead. This allows steering the
granularity of the resulting tasks resp. the maximum
number of tasks to create. The graph from the
previous step describes the relation between the
blocks as well as their coherence, which has impact
on the sorting order of the Blocks as well as decision
which Blocks will be distributed into the which task

(Fig. 4(c)).

6.4. MAPPING

The mapping (Fig. 4(d)) in this algorithm is
performed by a pragmatic ILP (Integer Linear
Programming) approach based on [9], which
focusses on minimizing the maximum execution
time of concurrently operating cores. The mapping
tool utilizes the open source oj!Algorithms’ project
which we use to solve the ILP equations.

The first step in this mapping algorithm is to
determine the required execution time ET;; of each
task i for the resp. core j. This is can easily be
determined by (1) and (2).

EY},]. =CT, *CC]., (1)
CC].=TC].*PS].*Q]., Q)

where C7; is the number of cycles which are
required to process the task and CC; the number of
cycles the core can process per second. The variable
TC; describes the number of ticks that are required to
process one cycle, PS; the prescaler for frequency
scaling and Q; the frequency of the quartz attached
to the core.

The second step is the formulation of mapping
constraints e.g. to limit the number of cores a task
will be allocated to one core (3)

D4, =1 Vie[m], (3)

with 4,; describing the allocation of task i to core
Jj, m number of tasks and » number of cores.

This equation however is only valid, if all cores
are suitable to process this task. As some of the tasks
may contain special requirements on a core, e.g. the
presence of a Floating Point Unit (FPU) or a specific
instruction set, it would be also required to narrow

? See http://ojalgo.org/
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down the solution space to wvalid cores. In our
example for instance, only the main core e200z6
contains a FPU, hence we would need to limit the
scope of valid cores to this core only.

A general formulation to narrow down the
solution space for multiple valid cores is given in (4)

A4,=0 VeV, @)

with 7 being a group of valid cores.

A very simple approach to minimize the
execution time can now be achieved solving the
equations (5) and (6) as mentioned in [9]

Zz —>min, Q)

"4 *ET, , <zVje[n], (6)

=1 LJ

with z being the maximum execution time of all
concurrently executed cores.

6.5. CODE GENERATION

The code generation for this algorithm is
performed by two code generators (Fig. 4(e)).

The first code generator is provided by Yakindu
DAMOS and innately capable of producing
hardware independent code for the resp. blocks of
the data flow graph. To support target ready code
generation, hardware related information is provided
by the hardware model. This consists of libraries for
I°C and SPI access as well as the addresses of
hardware = components, i.e. the memories
and peripherals.

However, the code for the blocks on its own is
not sufficient to provide target ready code. For
instance, it is still necessary to merge the blocks
code into tasks and allocate those to cores etc. This
is done by the operating system (OS) code generator.
Among others, its purpose is to create the task code
which will call blocks and distribute the code to the
respective cores C files. Furthermore, it will create
the input files for the targets compiler which will
specify the mapping from tasks to cores as well as to
provide the libraries for advanced controllers, e.g.
optional CAN, LIN or Ethernet controllers.

7. CONCLUSION AND OUTLOOK

This paper introduces a hardware model which is
capable of supporting automated partitioning and
mapping in heterogeneous multi-core systems. The
case study has shown how our hardware model is
able to support the involved steps and which amount

of hardware related information is required for an
automated execution. Furthermore, it has outlined a
feasible implementation of these aspects as part of a
seamless tool chain.

Future work will target the development and
implementation of advanced partitioning and
mapping algorithms with different goals (i.e. energy
efficiency), multiple constraints (e.g. bus access) as
well as their support with hardware models.
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Abstract: Advances in service-oriented architectures, virtualization, high-speed networks, and cloud computing has
resulted in attractive pay-as-you-go services. Job scheduling on such systems results in commodity bidding for
computing time. Amazon institutionalizes this bidding for its Elastic Cloud Computing (EC2) environment. Similar
bidding methods exist for other cloud-computing vendors as well as multi—cloud and cluster computing brokers such as
SpotCloud. Commodity bidding for computing has resulted in complex spot price models that have ad-hoc strategies to
provide demand for excess capacity. In this paper we will discuss vendors who provide spot pricing and bidding and
present the predictive models for future short-term and middle-term spot price prediction based on neural networks
giving users a high confidence on future prices aiding bidding on commodity computing. Copyright © Research
Institute for Intelligent Computer Systems, 2014. All rights reserved.
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1. INTRODUCTION

Cloud computing is seen as a hyper-
specialization of general-purpose  information
technology  with  computing attributes  and
characteristics making it an ideal information
technology delivery model. We assert that the real
definition of cloud computing is the convergence of
essential ideal characteristics of various distributed
computing technologies. A cloud/grid computing
system is reusing known economic models, but has
wide variances due to large sets of variables for both
the operation of the system and the hosting and
execution of client applications. These variances
provide new business models and markets that
provide profitability to the system owner, but must
also be offered at a unit price that is attractive to
users so that the commodity system is sufficiently
used to provide profit. This price-point is dependent
on time of use, number of users, and capitalization
cost. With ubiquitous cloud computing and grid
computing technology, it can become economically
beneficial as it is available at any time for everyone.
Economic benefits of cloud and grid adoption are

the main drivers as shown in the study by
Armbrust [1]. Initially, cloud providers had only a
fixed price for their service offerings [2-3]. As cloud
systems grow larger and are partitioned into more
unique configurations, this fixed price method
becomes inefficient when total demand is much
lower than data center capacity leading to under-use
of the system. Cloud providers need an incentive
mechanism to encourage users to submit more jobs.
When total demand rises over data center capacity, it
is desirable to provide an incentive to users to reduce
their demand through raising per—unit costs,
decreasing performance, or decreasing
system availability.

We illustrate the spot price (user cost) and spot
instance (system instance at that cost) mechanism on
the example of the Amazon Elastic Computing
2 Service (EC2). In 2009, Amazon introduced a new
set of spot instances to sell its unused data center
capacity based on a new market mechanism offering
a variable pricing method. With this service, users
are able to bid for unused capacity. The spot price
mechanism for EC2 shares many similarities with
the standard uniform price auction mechanism. The
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spot price charged for a request, may fluctuate
depending on the supply of, and demand for, spot
instance capacity. Spot prices are a tuple of
{maximum price per hour the user wishes to pay for
an instance type, the region desired, and the number
of spot instances to run}. If the maximum price bid
exceeds the current spot price, the job(s) will run
until termination by the user or the spot price
increases above the user set maximum price. The
cost of spot instance hours are billed based on the
spot price at the start of each hour an instance
executes. If the user spot instance is interrupted in
the middle of an hour of an instance use (because the
spot price exceeded the user maximum bid price),
the user is not billed for that partial hour of spot
instance use. However, if the user terminates the
spot instance a charge occurs for the partial hour
of use.

Market driven resource allocation has been
applied to grid computing environments [2-3].
Recently, it has also been adopted by cloud
computing. The auction-based resource allocation
mechanism in the cloud spot market causes the price
of services to be dynamic. The auction-based
mechanism tries to address the question of finding
the best match for customer demanded services in
terms of supply and price to maximize provider
revenue and customer satisfaction. For the provider,
we have revenue maximization, supply, and spot
price; whereas for the customer, we have cost
minimization, demand, and bid price.

Short term forecasting has been a key to
economic optimization in the electric energy
industry [4] and is essential for power systems
planning and operation. An electricity costing model
does not have a mechanism to store electricity as it
can not store its service while a cloud system can,
thus the floor of the electricity model can be much
lower than that of a cloud system as electricity can
not be stored in sufficient quantities to keep its floor
higher. The alternative is to restrict generation and
loose the currently produced power. In a cloud
model, the system can be made idle, almost
instantly, and await a price point when it would be
profitable to operate. For both the cloud market and
the electricity market, accurate forecasting is very
important for both production and consumption of
commodities like compute resources and electricity
in order to optimize their buying and
selling decisions.

In this paper, we demonstrate a neural network
method to predict spot prices that can be useful to
users of cloud computing for bidding on spot
instances of cloud system providers.

2. RELATED WORK

2.1. SURVEY OF CLOUD AND GRID
COMPUTING PROVIDERS

In an examination of the current literature
available on more than 120 cloud laaS and PaaS
providers, over 98 percent of cloud and grid
computing providers do not have a spot price and
auction mechanism including Microsoft’s Azure
products and Google’s Engine Products. The
SpotCloud system is the only provider found that
has a mechanism similar to the Amazon EC2, but it
is devoid of many of the control, security, and
ownership mechanisms that EC2 has. Also
noteworthy is the OpenStack open source cloud
infrastructure that many laaS vendors are supporting
as a competitor to Amazon EC2.

1) SpotCloud: SpotCloud is an IaaS cloud
clearing-house from Enomaly Inc. SpotCloud
brokers are buyers for, and sellers of, cloud
infrastructure capacity. SpotCloud is a bidding
exchange that establishes a “standard” computing
unit across sellers for simplified user management
allowing buyers to bid on a commodity product. Of
note, the computing unit sold is “raw” as it does not
offer service level agreements or value-added
elements such as security or application restart and
data backup.

Sellers of capacity join the exchange through the
Enomaly Web site and installing its own cloud plat-
form, Elastic Computing Platform (ECP),
OpenStack, or other platforms. This is done via an
API published by Enomaly. Sellers list the capacity,
geography, and price requirements on the SpotCloud
Web portal, where the information is presented to
buyers. A blind-listing can be done if a seller feels
that very low pricing on excess capacity may hurt its
brand or impact direct sales channels otherwise the
seller’s name is listed.

Enomaly provides transaction monitoring,
billing, buyer payment collection, and payment to
sellers. Enomaly collects a percentage of the seller
proceeds. In the SpotCloud model, much of the
value that Enomaly brings to the complex cloud
marketplace is convenience and simplification.
Sellers have little administrative overhead, and their
costs are aligned with revenue, since Enomaly’s fee
(a percentage of sales) covers marketing, sales,
billing, collection, and other costs of doing business.
Buyers are relieved of the burden of researching
individual providers, and because the rates are
posted, they can be assured that they are paying
market-defined rates for the services they buy.

With only ten percent of U.S. businesses using
laaS, enterprises are cautious about entering the
cloud due to concern over loss of control, security,
performance of applications — factors that are not
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addressed in a commodity cloud which may lead to
simple bid, commodity cloud services being only
useful for a few cases relegating an laaS like
SpotCloud a small market of wholesalers.

2) OpenStack: OpenStack is a classic “mash-up”
of the right technology and user needs being in the
right place at the right time. The OpenStack
Foundation (http://www.openstack.org/foundation)
has many organizations and companies contributing
and using this cloud system software. The primary
commercial lead in this effort is Rackspace.
Currently VMware does not have a mechanism for
spot pricing or an auction mechanism. Through the
vCloud product, part of their software suite,
VMware lists 177 companies that offer private and
public TaaS cloud configurations. VMware will also
support OpenStack by extending support for ESX
hypervisor in OpenStack.

IBM is using OpenStack as a central part of its
future cloud strategy in the IBM SmartCloud
Orchestrator ~ service. IBM  developed the
SmartCloud platform before OpenStack was
founded in 2009-2010, but now is replacing that core
component with OpenStack which will be the
foundation of the company’s cloud strategy. The
SmartCloud  Orchestrator  service  provides
configuration of the compute, storage and
networking resources needed applications run on the
IBM SmartCloud platform. SmartCloud is a pay-as-
you-go public cloud offering with components for
private cloud or dedicated hosted infrastructure as an
[aaS or PaaS. OpenStack is becoming a central cloud
component for IBM, HP, Dell, Cisco, Red Hat, and
Rackspace have also announced major initiatives
around the OpenStack project.

While an interesting competitor to Amazon EC2,
the OpenStack project is only an enabler of laaS and
PaaS sites and has no auction or spot price
mechanisms.

2.2. SPOT MARKET PREDICTION IN THE
CLOUD

Spot price and spot market prediction have a key
role in the economics of the electric energy industry
and is essential for power systems planning and
operations as discussed in [4-5]. Also in the
literature, there are neural network based techniques
to forecast electricity spot price. In [4], neural
network techniques based on short-term load
forecasting is presented to predict short-term spot
price in the Australian national electricity market.

In [6], characteristics of Amazon spot instances
have been explored and the authors have done their
comprehensive analysis based on one-year price
history in four data centers of Amazon’s EC2. They
analyzed different types of spot instances that

Amazon offers in terms of spot price and the inter-
price time (time between price changes) and
determined the time dynamics for spot prices by
hour-in-day and day-of-week. Moreover, they have
proposed a statistical model that fits well these two
data series. The statistical models based on the
mixture of Gaussian distribution with three or four
components are able to capture spot price dynamics
as well as the inter-price time of each spot instance.
Their model exhibits a good degree of accuracy
under realistic working conditions.

Amazon provides the price history to help
customers decide their bids. Figure 1 shows an
example of a price history graph obtained from [7].
Currently, Amazon EC2 spot instance services are
available for eight types of virtual machines. Each
virtual machine type has different resource
capacities for CPU, memory and disk. Amazon EC2
runs one spot market for each virtual machine type
in each geographical availability zone [8]. All spot
markets share the free data center capacity. This
capacity is the remaining resources after serving all
the guaranteed (i.e., contracted) instances.
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Fig. 1 — Amazon EC2 Spot Price History.

3. NEURAL-BASED PREDICTION
METHOD

Over the past few decades, many different
methodologies have been proposed for generating
reliable predictions ranging from technical [9] and
statistical analysis [10] to artificial intelligence
techniques [11]. One of the artificial intelligence
techniques, neural networks (NN), represent a
promising alternative as the inherent learning ability
allows effective capturing of the dynamic, nonlinear
and complicated features of the predicted data. For
example, a model of a feed-forward neural network,
a multi-layer perceptron, showed excellent
prediction results on many different financial
examples [12—17]. Therefore, for the prediction of
the spot prices we have used two standard models of
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NNs: a multilayer perceptron (MLP), Fig. 2, and a
recurrent neural network (RNN), Fig. 3 [11, 18].
These models are well researched and they are
capable to fulfill approximation tasks with any
required level of accuracy.

Fig. 3 — Structure of a recurrent neural network.

The output value of the three-layer perceptron
can be formulated as:

yF[zw[F[sz]]T] (1)

where N is the number of neurons in the hidden
layer, w, is the weight of the synapse from neuron

J of the hidden layer to the output neuron, w, are
the weights from the input neurons to neuron ; in
the hidden layer, x, are the input values, T, are the

thresholds of the neurons of the hidden layer and T
is the threshold of the output neuron [11, 18].
The output value of RNN can be formulated as:

y:Fs(iwfsh/_ToJa (2)

y,=F, (Z w,x, + D woh (t=1)+w, y(-1)-T, j ,(3)
i=1 k=1

where M is the number of neurons in the hidden
layer, w,, is the weight of the synapse from neuron

j of the hidden layer to the output neuron, N is the
number of input neurons, w, are the weights from
the input neurons to neuron ; in the hidden layer,
x, are the input values, w, is the synapse from k
context neuron of the hidden layer to j neuron of
the same layer, A (t+—1) is the output value of %

context neuron of hidden layer in the previous

moment of time ¢-1, wy; is the synapse from

context output neuron to ; neuron of the hidden
layer, y(¢-1) is the value of context output neuron
in the previous moment of time ¢—1, 7, are the
thresholds of the neurons of the hidden layer and 7,
is the threshold of the output neuron [11, 18]. The
logistic activation function F(x)=1/(1+¢™*) is used
for the neurons of the hidden ( £,) and output layer
(F,) for the both MLP and RNN models. The

standard back-propagation training algorithm [11]
with constant or adaptive learning rate [20] is used
for the training for both NN models.

Amazon EC2 provides spot instances from small
standard systems to extra-large multiprocessor
systems (at about 88 cores) and GPU co-processing.
We have used historical data about spot prices of the
“medium” cloud instances based on Linux and
Windows operation systems called ml.linux and
ml.windows respectively. These data are available
on the Amazon web site [7]. For our experiments,
we used 3842 spot price data points for 7 months
starting from December 2009 and ending June 2010,
which is a period of 215 days. This averages to 17
records of spot price for each day. We have divided
all the data on appropriate months in order to do the
experiments and visualization in a more
efficient way.

For the input data analysis, it is beneficial to
apply a moving simulation mode [14] since it
provides the use of last recent data in the time series
avoiding the impact of the “old” historical data on
the quality of the prediction. The successful usage of
the moving simulation mode for the financial
application [19] showed that it is not necessary to
choose a large data “window” for the analysis since
a larger window will include the “old” historical
data that makes the NN re-training less efficient.

Spot price prediction is beneficial in fulfilling
short-term (single step) and middle- or long-term
(multiple  steps) predictions. The short-term
prediction mode may provide better prediction
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results since the preliminary analysis shows that the
trend of data about spot price could change
unpredictably fast and the short-term prediction
could capture this change in an accurate manner.
Since we have an average of 17 records about spot
price per day, we have approximately 1.3 hours of
time before new data arrives and, therefore, we can
do the re-training of NN for each prediction step and
improves prediction accuracy. On the other hand, the
prediction interval of 1.3 hours is not suitable from
the practical point of view since users of cloud
resources want planning of their bidding strategies
for several days ahead, with one to five days ahead
being the most important.

4. EXPERIMENTAL RESULTS

We have formed the training set for our NN
models using the Box-Jenkins method [10]. We have
received the following results for the short-term [21]
and middle-term prediction modes.

Short-Term Prediction Mode. Similar to [19],
we have chosen 20 values as the size of the moving
simulation window. The MLP architecture of 5-10-1
was chosen as the prediction structure in this mode.
In particular, we chose 5 input neurons as it is
sufficient within the 20 input data points of the
moving simulation window with 10 neurons of the
hidden layer being sufficient to provide a good
generalization and prediction ability. We used the
constant learning rate of 0.1 for both hidden and
output layers of the MLP. The MLP is trained to
reach the sum-squared training error of 10~ with
2x10° training epochs and then, on each step of the
moving simulation mode, the MLP was re-trained

using 7x10° training epochs. One prediction step
took about 12 seconds on a computer with an Intel
Core 2 Duo processor at 2.4 GHz with 3 GB of
RAM. The total computational time for the whole
experiment in a short-term prediction mode was
about 13 hours. According to the short-term
prediction mode the real and predicted spot prices
for both ml.linux and ml.windows cloud instances
for each month from December 2009 through June
2010 are depicted in Figures 4 through 10. As shown
in these figures, the MLP model in the proposed
configuration provides a very good representation of
the actual trending for both prediction cases. The
numerical analysis of the predictions depicted in
Table 2 shows the high accuracy of the proposed
approach as the monthly average relative prediction
errors do not exceed 5.6% for the ml.linux data and
6.4% for the ml.windows data. The average relative
prediction errors for the whole testing period of six
months are 3.3% and 3.7% respectively for m1.linux
and ml.windows data. During the empirical analysis
we have noticed that the amplitude of several data
points is largely above or below of some average
amplitude of signal change. In those points the
prediction gives the result much different from this
largely changed amplitude assuming that there
should be the signal with much smaller amplitude.
Therefore we have considered such prediction
results as outliers. We have counted a prediction
result as an outlier when its relative prediction error
is more than 10%. The analysis of the prediction
results shows that we have 155 (about 4.0% of the
total results) and 188 (about 4.9% of the total
results) outliers for the ml.linux and the
ml.windows experiments respectively.
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Fig. 10 — Short-term prediction results for m1.linux and m1.windows for Jun. 2010.

Table 1. Numerical results for short-term prediction mode.

Avg. relative prediction Num.& Percent
Experiments error(%) of outliers (Rel. Predict. Err. >10%)
ml.linux | ml.windows ml.linux ml.windows
Dec.2009(266) 4.4 3.5 12 (4.5%) 16 (6.0%)
Jan.2010(556) 2.6 3.4 5 (0.9%) 25 (4.5%)
Feb.2010(556) 4.0 6.4 25 (4.5%) 28 (5.0%)
Mar.2010(663) 2.6 2.6 2 (0.3%) 10 (1.5%)
Apr.2010(564) 1.7 2.3 5 (0.9%) 7 (1.2%)
May 2010(637) 2.0 3.6 10 (1.6%) 49 (7.7%)
Jun.2010(595) 5.6 3.9 96 (16.1%) 53 (8.9%)
Average relative error/total (% number of) outliers: 33 3.7 155 (4.0%) 188 (4.9%)
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Middle-Term Prediction Mode. Taking into
account the long simulation time of the
computational experiment above we have provided
the middle-term prediction for the ml.linux data
only. We have used 88 and 176 input data points
from December 2009 to June 2010 as training data.
We have used two NN models (MLP 5-10-1 and
RNN 5-10-1) with reverse connections from both
hidden and output layers. Both models use adaptive
and constant learning rates. The constant learning
rates were 0.5 and 0.5 for the hidden and output
layers for the MLP model and 0.1 and 0.1 for the
RNN model. Both models are trained to reach the
sum-squared training error of 107 with 5x10°
training epochs. The training time of one middle-
term prediction experiment took about 30 seconds
using MLP model and 45 seconds using RNN model
for the case of 88 input data points and about 60
seconds using MLP model and 90 seconds using
RNN model for 176 input data points. All middle-
term prediction experiments were executed on a
Phenom II x 4 956 processor 3.4 GHz and 4 GB of
RAM. The total computational time for the whole

experiment in a middle-term prediction mode was
about 4 hours. According to the middle-term
prediction mode, the average and maximum relative
prediction errors for one to five days for the four NN
models are presented in Table 2 using training data
for 88 data points; Table 3 presents data for 176 data
points. The lower-case index values indicate the
following: 1) the MLP model with adaptive learning
rate; 2) the MLP model with constant learning rate;
3) the RNN model with adaptive learning rate; 4) the
RNN model with constant learning rate. The
graphical representations of middle-term prediction
results for each testing month are detailed in
Figures 11 to 14.

As can be seen the MLP and RNN models
provide accurate prediction results for the majority
of cases. For both of the 88 and 176 input training
data sets the prediction results are a bit less accurate
for the December 2009 and the June 2010 time
periods on the fifth prediction day. Therefore the
obtained results showed us good prediction abilities
of neural networks for the middle-term prediction of
spot prices of cloud resources.

Table 2. Numerical results for middle-term prediction using 88 training data points for each month.

Month Relative prediction errors, %
1 day 2 days 3 days 4 days 5 days
avr max avr max avr max avr max avr max
Dec 2009 4.3, 8.4, 4.0, |11.4, 4.5, | 11.5 4.1, | 11.5 43, | 147,
Jan 2010 1.7, 4.3, 1.6, |43, 1.5, 43, 1.7, |54 1.7, |54
Feb 2010 2.04 4.3, 24, 149 2.5 149 244 |5.04 24, |5.04
Mar 2010 2.2, 4.6, 22, 147, 23, 148 24, 149 24, |50,
Apr 2010 1.2, 2.2, 1.2, |22 1.3, |28 1.3, 29 14, |34
May 2010 1.45 3.85 1.5; | 3.8; 1.5, 4.2, 1.6, |42, 2.0, 143
Jun 2010 2.4 8.2 2.65 11.55 2.85 11.55 3.15 11.55 3.4 11.55
Total average error | 2.2 5.1 2.2 6.1 2.4 6.3 2.4 6.5 2.5 71

Table 3. Numerical results for middle-term prediction using 176 training data points for each month.

Month Relative prediction errors, %
1 day 2 days 3 days 4 days 5 days

avr max avr max avr max avr max avr max
Dec 2009 2.6; 6.0 2.8; 6.0 5.4 30.6 11.6, | 28.1, 142, | 28.1,
Jan 2010 201 451 211 571 211 581 201 591 191 601
Feb 2010 2.2, 4.5, 2.3, 4.6, 2.3, 4.7, 2.2, 4.8, 2.6; 15.7,
Mar 2010 212 412 211 501 221 511 231 521 252 1372
Apl' 2010 112 272 123 293 154 354 204 1634 214 1634
May 2010 132 252 142 352 142 382 142 382 152 442
Jun 2010 3.7, 143, | 5.0y 22.8; | 6.0; 40.1, | 6.1, 40.1, | 7.2 40.1,
Total average error | 2.2 5.5 2.4 7.2 3.0 13.4 4.0 14.9 4.6 17.8
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5. CONCLUSIONS AND FUTURE WORK

Predictive models based on artificial neural
networks for short-term and middle-term prediction
of future spot prices for cloud computing are
presented in this paper. Our models are based on
standard multi-layer perceptron and recurrent neural
network architectures. For prediction actions we
used a moving simulation mode approach to remove
old historical data for neural network re-training in
order to improve a prediction accuracy of the model.
The experimental results on the Amazon EC2 spot
instances showed high prediction accuracy of the
proposed approach. For the short-term prediction
mode the average relative prediction error does not
exceed 4% and the number of outliers (i.e., its
relative prediction error is more than 10%) is not
more than 5% for the total number of the prediction
results. For the middle-term prediction mode, the
average relative prediction error is in the range of
2.2 to 4.6% and the maximum relative prediction
error is in the range of 5.1 to 17.8%. The obtained
experimental results show that neural networks are
well suited for such kind of prediction and could be
very useful for users bidding on spot instance
services.

Prediction of spot prices from other cloud service
providers using neural networks will potentially be a
future direction of our research.
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Kathryn Dempsey, Vladimir Ufimstev, Sanjukta Bhowmick, Hesham Ali. A Parallel Template for
Implementing Filters for Biological Correlation Networks, International Journal of Computing,
Vol. 12, Issue 4, 2013, pp. 285-297.

High throughput biological experiments are critical for their role in systems biology — the ability to
survey the state of cellular mechanisms on the broad scale opens possibilities for the scientific researcher to
understand how multiple components come together, and what goes wrong in disease states. However, the
data returned from these experiments is massive and heterogeneous, and requires intuitive and clever
computational algorithms for analysis. The correlation network model has been proposed as a tool for
modeling and analysis of this high throughput data; structures within the model identified by graph theory
have been found to represent key players in major cellular pathways. Previous work has found that network
filtering using graph theoretic structural concepts can reduce noise and strengthen biological signals in these
networks. However, the process of filtering biological network using such filters is computationally intensive
and the filtered networks remain large. In this research, we develop a parallel template for these network
filters to improve runtime, and use this high performance environment to show that parallelization does not
affect network structure or biological function of that structure.

Julian Lamas-Rodriguez, Francisco Argiiello, and Dora B. Heras. Multiresolution rendering Based
on GPGPU Computing, International Journal of Computing, Vol. 12, Issue 4, 2013, pp. 298-307.

The problem of visualizing large volumetric datasets is appealing for computation on the GPU.
Nevertheless, the design of GPU volume rendering solutions must deal with the limited available memory in
a graphics card. In this work, we present a system for multiresolution volume rendering which preprocesses
the dataset dividing it into bricks and generating a compressed version by applying different levels of
compression based on wavelets. The compressed volume is then stored in the GPU memory. For the later
visualization process by texture mapping each brick of the volume is decompressed and rendered with a
different resolution level depending on its distance to the camera. This approach computes most of the tasks
in the GPU, thus minimizing the data transfers among CPU and GPU. We obtain competitive results for
volumes of size in the range between 64° and 256°.

Oleksandr Sudakov, Andrii Salnikov, Ievgen Sliusar, Oleksandr Boretskyi. Tools for Biomedical
Data Archiving in Ukrainian Grid Infrastructure, International Journal of Computing, Vol. 12, Issue 4,
2013, pp. 308-315.

Tools for archiving and extraction of data in Ukrainian National Grid for end-users’ applications are
proposed, implemented and deployed for practical applications in medical imaging, non-linear dynamics, and
molecular biology. Proposed tools provide the facilities to utilize large distributed storage space in grid
infrastructures for different practical tasks including desktop applications. Tools may be successfully used
even when on client platforms it is impossible to setup grid middleware, use web browser interfaces or grid
security infrastructure authentication. Tools consist of extensible client compatible with different software
and hardware platforms; web service for data transfer; web service for transparent data replication on grid
storage elements.

Tevaganthan Veluppillai, Brandon Ortiz, Robert E. Hiromoto. Big Data Transfer for Tablet-Class
Machines, International Journal of Computing, Vol. 12, Issue 4, 2013, pp. 316-323.

Several well-known data transfer protocols are presented in a comparative study to address the issue of
big data transfer for tablet-class machines. The data transfer protocols include standard Java and C++, and
block-data transfers protocols that use both the Java New IO (NIO) and the Zerocopy libraries, and a block-
data C++ transfer protocol. Several experiments are described and results compared against the standard Java
10 and C++ (stream-based file transport protocols). The motivation for this study is the development of a
client/server big data file transport protocol for tablet-class client machines that rely on the Java Remote
Method Invocation (RMI) package for distributed computing.

Robert Hoettger, Burkhard Igel, Erik Kamsties. Vector Clock Tracing and Model Based
Partitioning for Distributed Embedded Systems, International Journal of Computing, Vol. 12, Issue 4,
2013, pp. 324-332.

Tracking, partitioning and tracing in modern dynamic high performance computing systems are three of
the most innovative and important development aspects for performance optimization purposes and state-of-
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the-art advanced quality. This paper discusses these three aspects with respect to distributed systems and
proposes new mechanisms for an advanced utilization of software in this domain.

We present a specific tracking mechanism via vector clocks for model and code partitioning purposes and
the determination of causality relations. Further, a tracing approach for an effective analysis and thereby
utilization of code and the corresponding architecture is introduced. The combination of both approaches
leads to a high degree of parallelism and a fine-grained structure of execution units, that further traced,
supports a precise analysis of synchronous and asynchronous system’s behavior as well as an optimal load
balancing. The mechanisms are introduced with respect to a model based control engineering tool and event
diagrams.

Vladislav Falfushinsky, Olena Skarlat, Vadim Tulchinsky. Integration of Cloud Computing
Platform to Grid Infrastructure, International Journal of Computing, Vol. 12, Issue 4, 2013, pp. 333-
339.

Both grid and cloud are used to organize large scale calculations and data processing on remote
computers. Grid which became a basic computing infrastructure for the Large Hadron Collider experiments
provides unified technical solutions for sharing and merging distributed heterogeneous computing resources
within big collaboration groups. Cloud became popular among data centers and computing service providers
because of flexibility, manageability and efficient hardware utilization. Both share common ideology
“computing as a service”, so one can expect additional benefits from their integration. The paper describes
our approach to the integration. We propose to use cloud within grid sites for acceleration of application
deployment and easy support of multiple virtual organizations by grid sites. The cloud in grid approach has
been implemented and tested in Ukrainian National Grid, a part of European Grid Infrastructure.

Lukas Krawczyk, Erik Kamsties. Hardware Models for Automated Partitioning and Mapping in
Multi-Core Systems using Mathematical Algorithms, International Journal of Computing, Vol. 12,
Issue 4, 2013, pp. 340-347.

Multi-core CPUs offer several major benefits in embedded systems. For instance, they usually provide
better energy efficiency and more computing power compared to single-core CPUs. However, these benefits
do not come for free: A program has to be divided into tasks, which can be executed in parallel on different
cores. Partitioning of software and mapping on cores are nontrivial activities that require detailed knowledge
about the underlying hardware platform, e.g., the number of cores, their speed, available memories, etc. Such
information is typically stored in handbooks. If this information would be available in a machine readable
model, we call it hardware model, the partitioning and mapping activities can be automated. In this paper, we
propose a hardware model and illustrate it using an example of a Freescale multi-core CPU. We then discuss
a small case study, which illustrates the use of the hardware model in partitioning, mapping and code
generation.

Volodymyr Turchenko, Vladyslav Shultz, Iryna Turchenko, Richard M. Wallace, Mehdi
Sheikhalishahi, Jose Luis Vazquez-Poletti, Lucio Grandinetti. Spot Price Prediction for Cloud
Computing using Neural Networks, International Journal of Computing, Vol. 12, Issue 4, 2013, pp. 348-
358.

Advances in service-oriented architectures, virtualization, high-speed networks, and cloud computing has
resulted in attractive pay-as-you-go services. Job scheduling on such systems results in commodity bidding
for computing time. Amazon institutionalizes this bidding for its Elastic Cloud Computing (EC2)
environment. Similar bidding methods exist for other cloud-computing vendors as well as multi—cloud and
cluster computing brokers such as SpotCloud. Commodity bidding for computing has resulted in complex
spot price models that have ad-hoc strategies to provide demand for excess capacity. In this paper we will
discuss vendors who provide spot pricing and bidding and present the predictive models for future short-term
and middle-term spot price prediction based on neural networks giving users a high confidence on future
prices aiding bidding on commodity computing.
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Kathryn Dempsey, Vladimir Ufimstev, Sanjukta Bhowmick, Hesham Ali. Ilapasensnunii ma0Jon
s peanizamii  piabTpiB  gas  OioJIOTiYHMX KopensniifHMX Mepex, Mixcnapoonuit cypuan
Komn’romune, Tom. 12, Bunyck 4, 2013, c. 285-297.

Bucoka mporryckHa 34aTHICTH 010JIOTYHMX EKCIIEPUMEHTIB € OCHOBOIO iX BHKOPHUCTAHHS B CHUCTEMHIH
Oionorii — 3JaTHICT, BUBYATH CTaH KIITHHHUX MEXaHI3MIB Ha BEITUKUX BUOIPKaxX BIIKpUBAaE NI HAYKOBIIS
MOKJIMBICTh 3pO3YMITH, SIK B3aEMOIIOTH KIIITHHH Ta 1X KOMIUIEKCH Ta SIK BHSBUTH XBOPOOJUBI cTaHu. Tum
HE MEHIe, JaHi, OTPUMaHi MiJl 4ac eKCIEepHUMEHTIB, MaroTh BEIMKHHA 00’€M 1 € PI3HOPIAHMMH, BOHHU
BHMAaraloTh BUKOPUCTAHHS METOJIIB IITYYHOTO IHTENEKTY [UIs iX aHamizy. Byna 3ampomnonoBaHa KopensuiiiHa
MepekeBa MOJEeNb Ul MOZACTIOBAHHS Ta aHali3y LUX [JaHUX 3 BHCOKOIO NPOITYCKHOIO 3JaTHICTIO.
KommonenTn  Mozeni BH3HAYalOThCA 3a JOMOMOrol Tteopii rpadiB. Bonum Oymm agantoBaHi ans
MIPEACTABICHHS KIIOYOBUX OCOOJMMBOCTEH KIITKOBMX HULAXiB. [lomepenni qocmimKeHHs BUSABHIIM, IO Taka
Mepeka MOXKE MOKPAIIUTH BiIHOLIEHHS CUTHAJI-IIYM NMPH OiONOriYHMX OOCTIKEHHSX. TUM He MeHIe,
npouec (GinbTpyBaHHS AaHUX OiOJIOTTYHMX AOCHIIKEHb 3a JOMOMOIOI0 BUKOPHCTaHHMX B MeEpexi (inbTpiB
Ma€ BEIMKY O0YMCITIOBAIBHY CKIQJHICTh 1 PLUIBTPOBAaHI TaHI MalOTh BEMUKUAN 00’ €M. Y bOMY ITOCIiIKEHHI
MH pO3pO0IIIEMO TapajeNbHUi MIa0IOH Ul MOKPAIIeHHsS X MEPEeKEBUX (QUIBTPIB 3 METOI 3MEHIICHHS
4acy BUKOHAHHS Ta BUKOPHCTOBYEMO II€ BHCOKOIPOIYKTUBHE CEPEIOBHIIE VIS TOTO, 100 IOKa3aTH, L0
po3mapareneHHs He BIUIMBAE Ha CTPYKTYPY Mepexi a0o i1 QyHKIiOHyBaHHS 3 TOUKH 30py Oionorii.

JulidAn Lamas-Rodriguez, Francisco Argiiello, and Dora B. Heras. bararomacmrtadoBanuii
penaepinr 0aszoBanuii Ha GPGPU oOuncnennsnx, Mixcnapoonuii yncypnan Komn’tomunz, tom. 12,
punyck 4, 2013, c. 298-307.

[Ipobnema Bi3yamizamii 3HaYHHX 00 €MHUX HAOOpIB JaHWX TOCTAE€ MPU OOYHCICHHAX Ha TpadidHMX
mporecopanx npuctposx GPU. Omgnak npoektyBanHss GPU-06azoBaHuX pileHs 3 00’€MHOTO pEHAEPIHTY
(mobymoBu Ta BimoOpakeHHsS TpadidHOrO 300pa)KeHHS TPUMIPHOTO 00’€KTY) 3IIITOBXYETHCS OOMEKEHHM
00’emMoM mamM’siTi TpadivHOi KapTH. Y 1ii poOOTI MU MPENCTABISIEMO CUCTEMY IS OaratonapaMeTpuIHOro
00’€eMHOTO peHJepiHTy, mo o00po0isie Habip MaHWX NIITXOM HOro TMOAITy Ha OJNOKH Ta TEeHepyBaHHS
CTHCHYTOI BepcCii 3 3aCTOCYBaHHSIM Pi3HHX PIBHIB CTHCHEHHS Ha OCHOBi BeiiBieriB. [loTiMm mei cTucHyTHit
00’em  30epiraeThcsi B mam'sTi rpadiuHoi kaptu. /s momampimoro mporecy Bi3yarmizarii crocobom
HaKJIQJIaHHS TEKCTYpH, KOKeH OJIOK MaHUX PO3MAKOBYETHCA 1 BiZOOpakaeTbes 3 PI3HUM PiBHEM PO3ILTHHOI
3IATHOCTI 3aJIeKHO Bif ¥oro BimcraHi mo kamepu. lleit miaxix mo3Bomsie oOpoOUTH OLTBIIICTH 3aBAAHD Ha
rpadivHiii KapTi, 3BOASYM OO0 MiHIMyMy OOMIH maHmMu MDK mporecopom i GPU. Mu orpumamm
KOHKYPEHTHOCIIPOMOXKHI pe3y/IbTaTH [Uist 06°€MiB JaHUX Bix 64° 10 256°.

Ounexkcanap CynaxoB, Anapiii CanbHukoB, €Bren Ciocap, Osexkcanap bopensknii. IHcTpyMeHTH
JIsl apXiByBaHHSI OioMeIMYHMX JaHUX B YKpaiHCbKill rpin-ingpacrpykrypi, Mixcnapoonuii scypunan
Komn’romune, Tom. 12, Bunyck 4, 2013, c¢. 308-315.

B miif craTri 3ampomoHOBaHO IHCTPYMEHTH /AJisl apXiByBaHHS Ta OTPHMaHHS JaHUX KiHIEBUMH
KOPHUCTYBaIlbKUMH HporpaMamMu Y KpaiHChKOi HallioHaJdbHOI rpig-cucteMu. Lli iHCTpyMeHTH pealizoBaHi Ta
BIIPOBKEHI I MPAKTUYHUX 3aCTOCYBaHb B 00MacTi MeAWM4HOI Bizyamizalii, HeTiHIHHOI AWHAMIKH Ta
MOJIEKYISpHOI Oionorii. 3ampornoHoBaHi IHCTPYMEHTH HaJalOTh MOXKJIMBICTH BUKOPHCTAHHS PO3MOALICHUX
eJIeMEHTIB 30epiraHHs JaHUX BEIUKOr0 00’€My B IpiA-iHGPAaCTPyKTYpi Ul Pi3HUX NMPAKTUYHUX 3aBAaHb,
BKJIIOYAIOYM 3aCTOCYBaHHS Ha poOOYMX CTaHUifgX. [HCTpyMEeHTH MOXyTh OyTH YCHIIIHO BHUKOPHCTaHi,
HaBIiTh SKIIO Ha KII€EHTCHKHUX IUIAT(OpPMax HEMOXIIMBO BCTAHOBUTH CEPEAMHHE MporpaMHe 3a0e3nedeHHs
rpia, BUKOpUCTAaTH BeO-Opay3ep abo ayTeHTH(]iKaLio B rpig-iHppacTpykTypy. [HCTpyMeHTH CKIagaroThes 3
PO3LIMPEHOTO KIIIEHTA, CYMICHOTO 3 PI3HUMH MPOrPaMHUMU Ta allapaTHUMH I1aThopMaMu; BeO-cepBicy Aus
nepenavi JaHux; BeO-cepBicy AJIsl MPO30poi perutikamii JaHUX Ha rpig-eneMenTax 30epiraHHs JaHHUX.

Tevaganthan Veluppillai, Brandon Ortiz, Robert E. Hiromoto. Ilepenaua BeJukux o0cAriB JaHNX
IJISl TUIAHIIETHUX KoMI'ioTepiB, Mivycnapoonuit ycypuan Komn’romune, Tom. 12, sunyck 4, 2013, c.
316-323.

Jlexinpka BiIOMUX MPOTOKOIIB Mepeaayi JaHUX NPEICTABICHO B MOPIBHUIBHOMY OCTIIKEHHI Ui TOTO,
o0 JOCHIOUTH NMHUTAaHHS MepeAadi BEMMKUX OOCriB JaHWX AJsl IUIaHIIETHUX KoM torepiB. Ilporokomn
nepenavi JaHUX BKIIOYAOTh cTaHgapTHi Java 1 C++ mpoToKonM, a TakoXK HPOTOKONM mepenadi OJNOKiB-
JaHMX, SKi BUKOpHCTOBYIOTH sIK Java New IO (NIO) i1 6ibmioTexn Zerocopy, Tak 1 IPOTOKOIM Iepenadi
onokiB-ganux C++. OmucaHo AeKibKa €KCIEPHUMEHTIB Ta iX pe3y/lbTaTH B MOPIBHSHHI 31 CTAaHIAPTHUMH
Java 10 i C++ mpouenypamu (mOTOKOBI (paidjioBi TpaHCHOPTHI MPOTOKOIM). MOTHBALi€lO Ui LBOTO
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JOCIIIKEHHS € Po3poOKa KIEHT/CEpBEpHOr0 MPOTOKONY mepeaadi (aiiiliB 3 BETUKUM 0OCATOM NaHUX AJIS
KIIIEHTCHKUX KOMIT'IOTEPiB IJIAHLIETHOTO Kiacy, 110 0a3yeTbcsi Ha Meroni Bimmaienoro moctymy (RMI)
nakery Java Ui po3noAiieHuX 004YHCIIEeHb.

Robert Hoettger, Burkhard Igel, Erik Kamsties. TpacyBannsa 3a J0IOMOro0 BeKTOPHOIO
TAKTOBOI'0 T'eHepaTopa Ta PO3MOALT HAa OCHOBI Mogendi NJasi AUCTPHOYTMBHHMX BOYNOBAHHMX CHCTEM,
Mixncnapoonuii scypuan Komn’romune, tom. 12, punyck 4, 2013, c. 324-332.

BigcrexxenHs, po3moxmin Ta  TpacyBaHHS B CyYaCHHX JAMHAMIYHMX  BUCOKOIPOAYKTHBHHX
OOYHCITIOBAIBHUX CUCTEMax € TpbOMa HAaHOUIBIIMMH IHHOBALIHHUMHM Ta BaXXJIMBUMU AacleKTaMH
MPOEKTYBaHHsS JJs1 3a0e3MeUeHHs ONTuUMi3alil NPOAYKTUBHOCTI Ta CydacHOI Kpamioi SKOCTI TaKuX
BHUCOKONPOAYKTUBHUX cHcTeM. Ll cTarTss oOroBOpro€ Ii TpU acHeKTH CTOCOBHO PO3MOAUICHUX CHUCTEM 1
MIPOIIOHY€E HOB1 MEXaHI3MH LI KPaIoro BUKOPUCTaHHS IMPOrPaMHOT0 3a0e3eUeHHs B il ramy3i.

Mu mpeacTaBiIseMO KOHKPETHHM MeEXaHi3M BiJCTEKEHHS 4epe3 BEKTOPHI TaKTOBI T'€HEpaTopu s
posmonity MoAedi i KOAy Ta BHM3HAYCHHS NPUYMHHO-HACTIAKOBUX 3B’s3KiB. Jlajdi BHKOPHCTOBYETHCS
TpacyBaHHs 1751 epEKTUBHOTO aHali3y i, TAKUM YWHOM, BUKOPHCTAHHS KOIY Ta BIAMOBIOHOI apXiTEKTYpH .
[loennanHs 1MX ABOX MiAxoxAiB 3abesliedye BHCOKMUM CTYMiHb MNapajeii3Mmy, AeTalli3alilo CTPYKTypH
BUKOHYBaHMX OJIOKiB, 110 Aaii OyIyTh TpacyBaTHUCS, , HIATPUMY€E TOYHUN aHaIIi3 MOBEJIHKH CHHXPOHHHUX Ta
ACHHXPOHHUX CHCTEM, a TAKOX ONTUMAJbHUH PO3MOJALT HaBaHTaXEHHS. MeXaHi3MH BBOAATHCS CTOCOBHO
MOJIEITi, 3aCHOBaHOI Ha 1H)KEHEPHUX IHCTPYMEHTAaX YIPaBIiHHS Ta JiarpaMax Mmomii.

Baaguciaas @anbpymmucsknii, Onena Ckapaar, Bagum TyiabunHcebkuii. InTerpania miargopmu
XMapHUX 004UCJIeHb B Ipia iHppacTpyKTYpY, Mixcnapoonuuii scypnuan Komn’tomune, oM. 12, BUILyCK
4, 2013, c. 333-339.

Sk Tpig, Tak i XMapHi O0YMCIIEHHS BUKOPUCTOBYIOTHCS JUIA OpTraHi3allii CKIIaqHiuX 004YHCIeHb Ta 00pOOKH
BEJIMKOT0 00’€My HaHMX Ha BiAgajleHuX Komm'rorepax. ['pid, 1O € OCHOBHOIO OOYHMCIIIOBAIBHOIO
iHPACTPYKTYpOIO ISl eKCIIEPUMEHTIB Ha Benmukomy aHApOHHOMY Komnaiiiepi, Hajae yHi(pikoBaHI TeXHIUHI
pilIeHHs A MOy Ta 00’ €THAHHS PO3MOIUTEHIX TeTePOreHHUX KOMIT IOTEPHUX PECYPCIB MK BETHKHMU
pobounmu Tpymamu. XMapHi OOYHCIEHHS HaOylmW TOMyNSApHOCTI cepel MaTa-IeHTPiB Ta TpoBaiaepiB
O0YHCITIOBATTHPHUX CEPBICIB BHACHIOK THYYKOCTi, KEPOBAHOCTI Ta e(peKTHBHOCTI BUKOPUCTAHHS amapaTHUX
pecypciB. OOHIBI TEXHONIOTI peali3yIoTh iIef0 “00UNCIIeHb K CepBicy’”’, TOK MOXKHA OYIKYBATH TOJATKOBHX
mepeBar Bing ix iHTerpamii. B crarri ommcanmii Ham migxig mo Takoi iHTerpamii. Mu mpomoHyeMo
BUKOPHCTOBYBATH XMapHI OOYHCIEHHS Y CepeauHi Tpim-callTiB Ay MPHUIIBUIIICHHS pPO3TOpTaHHS
OOYMCITIOBATBHUX 33aad  Ta CHPOIIEHHS MIATPUMKH TpiA-caliTaMu BETMKOI KUTBKOCTI BIPTYalIbHHX
opranizamii. [ligxixg “xmapHi 00UMCIIEHHS y TPix” BOPOBAKEHHUI Ta MPOMIIIOB TECTyBaHHS B YKpaiHChKiil
HaI[lOHAJIBHIN Tpil-CHCTEMI, SIKa € YACTUHOIO €BPOIEHCHKOI Tpi-iHPpacTpyKTypH.

Lukas Krawczyk, Erik Kamsties. Anmapatni Mogeni 1Jii aBTOMaTH30BaHOr0 PpoO3MOALIY Ta
BiT0OpaskeHHs1 B 0araTosiiepHUX CHCTeMaX 3 BHKOPHUCTAHHSIM MATeMATHYHHX AJITOPUTMIB,
Mixcuapoonuit scypuan Komn’romunz, Tom. 12, punyck 4, 2013, c. 340-347.

BararosinepHi mpoiiecopy HaJaloTh KilbKa OCHOBHHX IepeBar y BOYIOBaHWX cHcTeMax. Hampukian,
BOHH 3a0€3MeUyIOTh Kpally eHeproedeKTHBHICTh Ta OUThITy OOYHCIIOBAIbHY MOTYXHICTH B MOPIBHSHHI 3
oqHOAMEpHUMHU Tporiecopamu. OnHak, Il TepeBard He MaloThcs OE3KOIITOBHO: IporpamMa Mae OyTH
po3IiNieHa Ha 3aBJaHHS , 1[0 MOXKYTh OyTH BHKOHAHI MapaielbHO Ha Pi3HUX sapax. Po3moain mporpamMHoro
3a0e3meueHHs Ta BimoOpakeHHS WOro YacTWH Ha sapaxX € HETPUBIAIBHWM 3aBJaHHSIM, IO BHMarae
JIeTATBHUX 3HaHb MPOo 0a30By amapaTHy IuiaThopMy, 30KpeMa, TpO KITBKICTh sAep, iX IIBHUIKOMIIO,
JIOCTYITHIO TIaM’siTh, Tommo. L{s indopmariis 3a3Budai 30epiraeTbecss B HOBiAHWKAX. Ko mst iHGopMaIris
OyJie mocTyITHA KOMII FOTepHINM Momeni (Ha3BeMO I1e MOS0 alapaTHUX 3ac00iB), TO PO3MOMILT 3a/1a4 Ta ixX
BiloOpakeHHS Ha sAIpax MOXKYTh OyTH aBTOMATH30BaHi. Y IIiif CTaTTI MM MPOTIOHYEMO MOJIENb alapaTHUX
3aco0iB Ta ULTOCTpyeMO 11 Ha NpHKIaAi OaratosaepHux mpoiiecopiB Freescale. BukopucranHs momeri
amapaTHUX 3aco0iB MpU PO3MOALIL, BiIOOpaKeHHI Ta TIeHepalii KOay NPOUIIOCTPOBAaHE Ha IPHUKIAIL
TECTOBOTO TOCITIKEHHS.
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Bosomumup Typuenko, Baagmcenas Iynbn, Ipumaa Typuenko, Richard M. Wallace, Mehdi
Sheikhalishahi, Jose Luis Vazquez-Poletti, Lucio Grandinetti. IlpornosyBanHss niHum pecypcis
XMapHHUX 004YMCIeHb 3 BHKOPMCTAHHSIM HEHMPOHHUX Mepex, Miycnapoonuit scypnan Komn’romune,
ToM. 12, Bunyck 4, 2013, c. 348-358.

[Iporpec B cepBiCHO-OpIEHTOBaHMX apXiTeKTypax, BipTyamizalii, BHCOKOMIBHIKICHUX Mepexax Ta
XMapHHUX OOYHMCIICHHSX MPHU3BiB A0 MOSBU NPUBAOIUBHUX OIUIATHUX cepBiciB. [ImanyBaHHA 004YHCIIOBATBHUX
3a]a4 B TAKHX CHUCTEMax € Pe3yJbTaToOM ayKLiOHHUX TOPTiB 3a pecypcH oOUMCIIOBaIbHOrO yacy. Kommanis
AMa30H BCTaHOBHJIA NMPAKTHKY TaKUX ayKLUIOHHUX TOPriB JUId iXHBOTO cepBicy, mo HasuBaeThes Elastic
Cloud Computing (EC2). IToniOni MeToaM ayKUiOHHHMX TOPTiB iCHYIOTH B iHIIMX IpoBaiiiepiB XMapHHX
o0uHCIIeHb, a TAKOXK Y OPOKepiB XMapHHUX Ta KJIaCTepHUX o0uncieHb Takux sk SpotCloud. AykuioHHi Topru
3a O0YMCIIIOBAJIbHI PECypCH TNPHU3BOIATH OO CTBOPEHHS CKIAJHMX MOJENEH WiHKM pecypcy, IO MaroTh
cnewianpHi crparterii s 3abe3nedyeHHs NMOTped B HAIJIMIIKOBUX pecypcax. B miil craTrti Mu 3aidcHUIM
OrJIsiA MpoOBaizepiB, XTo 3abesnedye (GopMyBaHHS LiHM 3a AYKLIOHHMMH NPUHIMIIAMH, Ta NPEICTaBHIH
MPOTHO3YI04i MOJENi IJIsI MaliOyTHBOIO0 KOPOTKOCTPOKOBOTO Ta CEPEAHBOCTPOKOBOTO MPOTHO3YBAaHHS LIHU
O0UYHCITIOBATBHUX PECYPCIB 32 JOMOMOIol0 HEHPOHHHUX MepexX. Mu 3a0e3Meunif BUCOKY TOUHICTh POTHO3Y
MaiiOyTHBOI iHK AJ1s1 HOTO BUKOPUCTAHHS B ayKLIOHHUX TOPrax 3a 0OYMCIIOBANbHI pecypcH.
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Kathryn Dempsey, Vladimir Ufimstev, Sanjukta Bhowmick, Hesham Ali. Ilapannensnbiii madiaon
AJIs1 peanu3anuy GUIBTPOB UIsA OMOJIOTHYECKUX KOPPeISMOHHBIX ceTeil, Mesicoynapoonstii scypHan
Komnvromunez, tom. 12, Bpimyck 4, 2013, c. 285-297.

Bbicokast mpomyckHasi COCOOHOCTh  OHOJIOTMYECKHX OSKCHEPHUMEHTOB SIBISETCS OCHOBOH  HMX
WCTIOJIb30BAHMUS B CHUCTEMHOM OHOJIOTHM — CIOCOOHOCTH M3y4aTh COCTOSHME KJIETOYHBIX MEXaHH3MOB Ha
OONbIINX BBIOOPKAX OTKPBHIBAET Ui YYEHOTO BO3MOXKHOCTBH IMOHAThH, KaK B3aUMOACHCTBYIOT KJIETKH M HX
KOMIUIEKCHl M KaK BBIABHTH OOJE3HEHHBIE COCTOAHHMA. TeM He MeHee, JaHHbBIC, TOJIyYCHHBIE B XOJe
SKCIIEPUMEHTOB, HUMEIOT OOJIBIION 00BbeM M SABISIOTCA PAa3HOPOIAHBIMHM, OHH TPEOYIOT HCIHONb30BAaHUS
METO/IOB HCKYCCTBEHHOTO HMHTEIUIEKTa A WX aHajiu3a. bblla mpeanokeHa KOppesIMOHHAs CeTeBas
MOJIeTIb 1715l MOJIETMPOBAHMS U aHAJIM3a 3THX JaHHBIX C BBICOKOW MPOITYCKHON CIIOCOOHOCTHI0. KOMIIOHEHTHI
MOJIETIH ONPENEeISIIOTCS ¢ HoMoupio Teopun TpadoB. OHM OBUIM aZanTHPOBAaHBI AJS MPEACTaBICHUS
KIIIOUEBBIX OCOOCHHOCTEN KIIETOUHBIX myTel. [Ipensiaymue nceaeqoBanus MoKa3aid, YTO TaKasi CeTb MOXKET
VIAyYIIUTh OTHOLIEHHWE CHUTHAJI-IIYM NpH OHONOTMYECKUX HCCICNOBaHUAX. TeM He MeHee, NpOoLecc
(GUIbTpaly JaHHBIX OMOJIOTUYECKUX UCCIICAOBAHUN C IIOMOIIBIO UCTIOJIB30BaHHBIX B CETH (PHIIBTPOB UMEET
OONBIIYIO BBIYMCIMTENBHYIO CIOKHOCTH M (MIBTPOBAHHBIE AAaHHBIE MMEIOT OonbplIoi o0beM. B sToM
WCCIICIOBAaHUN MBI pa3pabaTbiBaeM MNapajuieNbHBIN IIa0MOH U YJIYyYIIEHHS 3THX CETEBBIX (DUIBTPOB C
LENbI0 YMEHBIIEHHS] BPEMEHU BBIIIOJIHEHUS U UCIONb3YEM 3TO BHICOKONPOU3BOAMTEIBHYIO Cpely AJIS TOrO,
9TO0BI MOKa3aTh, YTO pacnapajuieIMBaHUE HE BIMSIECT Ha CTPYKTYPY CETH WM €€ (YHKUHMOHUPOBAHUS C
TOYKH 3pEHHS OHMOJIOTHH.

JulidAn Lamas-Rodriguez, Francisco Argiiello, and Dora B. Heras. MuoromacmtadupoBaHHbIii
peraepunr OazupoBaHHblii Ha GPGPU Bbrumciaenusx, Mesxwcoynapoonwiii scyprnan Komnwvromune,
TOM. 12, BBINYCK 4, 2013, c. 298-307.

[IpoOnema BU3yanu3auuy 3HAYUTENBHBIX OOBEMHBIX HA0OPOB JaHHBIX BO3HUKAET MPHU BBIYMCICHUSAX Ha
rpaduyeckux mporeccopHbeix ycrpoiictBax GPU. Omnako npoektupoanne GPU-6a3upoBaHHBIX pelIeHui
n3 O0BEMHOTO peHJepuHTa (IOCTPOSHUS M OTOOpaKeHHWS TpapUvecKoro M300pakeHUs TPEXMEPHOTO
00bEeKTa) CTAJIKWBACTCS OIPAaHWYEHHBIM O0BEMOM MaMATH Tpadudeckoil kapTel. B 3T0it pabore MbI
MIPEJCTAaBIIIEM CHCTEMY ISl MHOTOIAapaMeTpUIecKoro 00BEMHOTr0 peHIepuHTa, oOpabaTeiBaromuii Habop
JaHHBIX ITEM €ro pa3feieHUs Ha OJIOKM M T€HEPUPOBAHUS CXKATOW BEPCHU C NMPUMEHEHHUEM DPa3IHYHBIX
YpOBHEH C)KaThs Ha OCHOBE BEMBIIETOB. 3aTeM AITOT CXKAThIii 00BEM COXpaHSETCs B MaMsTH rpaduyuecKoi
kapThl. [ ganpHelero npomecca BU3yaau3aluy Cloco00M HaJOKEHUS TEKCTYPbI, KaKIbIH OJIOK JaHHBIX
PaclakoBBIBACTCS U OTOOpa’kaercsi ¢ pa3HbIM YPOBHEM DAa3pEIICHHsI B 3aBHCUMOCTH OT PACCTOSHHS OO
KaMepbl. DTOT MOIXOA IO3BONIIET 00paboTaTh OONBIIMHCTBO 3a7ad Ha TpaduvecKodl KapTe, CBOAS K
MUHUMYMY OOMEH HaHHBIMM Mexny npoueccopom u GPU. Mbl momydmnu KOHKYPEHTOCIOCOOHBIE
Pe3ynbTaTHl IS 00BEMOB TaHHBIX OT 64° 10 256°.

Anekcangp CynakoB, Angpeii CanbHukoB, Epremmii Cuirocap, Auaekcanap bopenxmnii.
HNHCcTpyMeHTHI 1J1s1 apXUBHPOBAHHMS OHOMeANYEeCKHMX JAHHBIX B YKPANHCKOI rpua-uH(ppacTpyKType,
Medsicoynapoonwtii scyprnan Komnvromune, Tom. 12, Beimyck 4, 2013, c. 308-315.

B sT0l cTathe mpennoKEHbl MHCTPYMEHTHI A apXUBUPOBAaHUSA M IOMYyYEHMS JAHHBIX KOHEUYHBIMHU
MOJIb30BATEILCKUMU  IIPOTpaMMaMM  YKPaWHCKOM HAlMOHAIBHOM TPUA-CUCTEMBL. OTH HMHCTPYMEHTHI
peann30BaHbl M BHEAPEHBI Il NMPAaKTHYECKUX MPUMEHEHHUH B O0OJAaCTH MEIUIMHCKOW BU3yalH3alHH,
HETMHEHHONW JAWHAMHUKH W MOJEKyJsipHOH Ounonoruu. IlpeniokeHHbIE WHCTPYMEHTBHI MNPEIOCTABISIOT
BO3MOKHOCTH WCIIOJIb30BaHMS paclpeesieHHbIX JIEMEHTOB XpaHEHHs JAHHBIX OONbLIOro o0bema B IpU-
UHOPACTPYKTYpe sl pa3iMyHBIX MPAKTUYECKUX 3a]ad, BKIOYAs MPUMEHEHHEe Ha pabodyux CTaHIUSX.
WHCTpYMEHTBI MOTYT OBITH YCIEIIHO WCIONb30BaHbI, Ja)Ke €CIU Ha KJIMEHTCKUX IIaT(opMax HEBOZMOXKHO
YCTAaHOBUTH MPOTPaMMHOE OOEcClieueHHE CpPEIHEro Cios TpUJ, HCIONb30BaTh BeO-Opaysep wiu
ayTeHTU(QUKALMIO B TpuA-UHPpacTpykTypy. WHCTpYMEHTBI COCTOST U3 PAaCIIMPEHHOTO KJIMEHTa,
COBMECTUMOTI'O C Pa3IHMYHBIMH NPOTrPaMMHBIMH M alllapaTHBIMU IUIaTGopMamu; BeO-cepBrca Il Iepenadn
JaHHBIX; BeO-cepBUCa IS MPO3PAYHON PEIUIMKALMK JAHHBIX HA TPUA-3JIEMEHTaX XpaHEHHS JaHHBIX.
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Tevaganthan Veluppillai, Brandon Ortiz, Robert E. Hiromoto. Ilepenaua Oonpmux 00bemMoOB
JAHHBIX /ISl JIAHIIETHBIX KOMIIBIOTEPOB, Medxcoynapoonstit scypuan Komnviomunz, ToM. 12, BBIIyCK
4, 2013, c. 316-323.

Heckonbko M3BECTHBIX MPOTOKOIOB NMEPENAYM TAHHBIX MPEICTABIECHBI B CPaBHUTEIHLHOM HCCIEIOBAHUU
JUIE TOrO, 4YTOOBI HCCIIEIOBATh BONPOC Iieperadyd OoNbIIMX O00BEMOB JAaHHBIX ISl IUIAHIIETHBIX
KOMIIbIOTEPOB. IIpOTOKONBI Mepeaun NaHHBIX BKIIOYAIOT cTaHAApTHhIE Java u CH++ IpOTOKOMNBI, a Takxke
MIPOTOKOJIBI Nepenaun OJOKOB — JAaHHBIX, KOTOphle HCNoib3yloT kKak Java New IO(NIO) u Oubmuoreku
Zerocopy, Tak U MPOTOKOJIBI Iiepenadn 06710koB — naHHbIX C++. OnucaHbl HECKOIBKO SKCIEPUMEHTOB U HX
pe3ynbTaThl M0 cpaBHEeHMIO co craHaaptHeiMu Java 10 m C++ mpouenypamu (moTokoBbie (hailnoBbie
TPaHCIOPTHBIE  MPOTOKOJNBI). MoTHBamued AJsl  3TOrO  HCCIENOBAaHMA  sIBISETCS  pa3paboTka
KJIMCHT/CEpBEPHOr0 MNPOTOKOda mepenadd (aiioB ¢ OOJMbIIMM OOBEMOM MJAHHBIX Uil KIMEHTCKHUX
KOMITBIOTEPOB IUIaHIIETHOTO Kjacca, OCHOBAHHBIA HA Meroze yaajneHHoro poctyna (RMI) makera Java mns
pacnpeneneHHbIX BEIYUCICHHUH.

Robert Hoettger, Burkhard Igel, Erik Kamsties. TpaccupoBanue ¢ NOMOIIBI0 BEeKTOPHOIO
TAKTOBOI'0O TeHEPaTopa M pacipelejieHHe Ha OCHOBe MOJAEJM sl AUCTPHOYTUBHBIX BCTPOEHHBIX
cucrem, Meaycoynapoonuwtii scypuan Komnviomunz, tom. 12, spinyck 4, 2013, c. 324-332.

OtcnexuBanue, pacnpenenesue u TpacCUpPOBKa B COBPEMEHHBIX JTMHAMHYECKUX
BBICOKOITPOM3BOJUTENbHBIX BEIYMCIUTEIBHBIX CUCTEMAX ABJISIIOTCS TPEMsI KPYIHEHIIMMY HHHOBALIMOHHBIMHU
U BaXHBIMH AacleKTaMHM HPOEKTHUPOBAHMA Ml OOECHEYeHHsS ONTHMH3ALUM HPOU3BOAUTEIBHOCTH U
COBPEMEHHOIr'0 JIy4YIIero KauecTBa TaKHX BBICOKONPOU3BOAUTEIBHBIX CHCTEM. JTa CTaThsl 00CYXAaeT 3TH
TPU acHeKTa OTHOCUTENBHO DPACHpPEIelIeHHBIX CHCTEM M MpeylaraeT HOBbIE MEXaHHM3Mbl IJISl JIy4IIEro
WCTIOTIB30BAHMS MPOTPAMMHOTO 00ecIiedeH s B 3TOi 00JIacTH.

MBpI npencraBisieM KOHKPETHBIA MEXaHU3M OTCIIEKHMBAHUS Uepe3 BEKTOPHBIC TAKTOBBIE T€HEPATOPHI IS
pacnpeneneHius MOIEIN W KOAa W ONpeAeNeHUs NPUYMHHO-CIIEACTBEHHBIX CBszell. Jlamee mcmonb3yercs
TpaccupoBKa Ui 3QQPEeKTUBHOrO aHajau3a M, TAKUM OOpa30M, MCIOJIb30BaHHE KOIA M COOTBETCTBYIOIIEH
apxutekTypbl. CoderaHue 3THX JIBYX IIOIXOIOB OOECHEUMBACT BBICOKYIO CTElEeHb Mapajulesn3Ma,
JEeTAIN3aLHUI0 CTPYKTYPhI BBIIOJIHAEMBIX OJIOKOB, KOTOpbIE Jaliblie OyIyT TpacCUpOBaThCA, HOALCPKUBAET
TOYHBII aHAIU3 MOBEACHHUS CHHXPOHHBIX M aCHHXPOHHBIX CHCTEM, a TaKXK€ ONTHMAaJbHOE paclpenencHue
Harpy3ku. MexaHu3Mbl IEHCTBYIOT B OTHOLIEHWU MOJEIH, OCHOBAaHHOH Ha HWH)KEHEPHBIX HMHCTPYMEHTaXx
yIpaBIeHUs U AUarpaMMax COOBITHH.

Baaauciaas ®dansdpymunckuii, Enena Ckapaar, Banum Tyasunnckuii. UnTerpanus niaargopmsl
00/1a4HbIX BhIYHMCIeHUIT B rpull HHPPACTPYKTYPY, Mexcoynapoousiii scypnan Komnsromunz, Tom. 12,
BbINyck 4, 2013, c. 333-339.

Kax rpua, Tak m oOjadHbIe BBIYMCIEHHS WCTIONB3YIOTCA ISl OPTaHHU3AIWUU CIIOKHBIX BBIUMCICHUN U
00paboTku OONBIIOro 00beMa JaHHBIX HA YAAJNEHHBIX KOMITbIOTEpax. ['pHi, KOTOPBIA SBIISETCS OCHOBHOU
BBIYUCIIUTEILHON WHPPACTPYKTYpOH Il OKCIEPUMEHTOB Ha boibmmoM aapoHHOM KoJUtaimepe,
MpeaocTaBisier yHUMDUUIMPOBAHHBIE TEXHWYECKHE peIIeHHs [ pasfeleHuss W oObennHEeHHs
pachpenereHHbIX TEeTePOreHHBIX KOMITBIOTEPHBIX PECYpPCOB MEKIY KPYIHBIMH DPaOOYUMH TPYIIaMH.
OO6navHple BEIYHMCICHUS MIPHOOPENN MOMYIIPHOCTh CPEH JIaTa-IEHTPOB M MPOBANWIEPOB BBIYUCIATETBHBIX
CEpPBHUCOB BCJICACTBUE TMOKOCTH, YIIPABISIEMOCTH U 3PPEKTUBHOCTH HCIIOIb30BAHHUS ANIIAPATHBIX PECYPCOB.
O0c TEXHOJNOTMH peaTu3yIOT UACIO “BRIUMCICHHMH KaK CepBHCa”, IOITOMY MOXHO OXHIATh
JOTTOTHUTENBFHBIX MPEUMYIIECTB OT MX MHTErpalu. B cTathe ommcaH Hall MOAXOJ K TaKOH HWHTErpalyy.
Mpl mpemiaraeM HCIONB30BaTh OOJAYHBIC BBIYMCICHUS B CEPEAHHE TPHI-CAUTOB JUIsl yCKOpPEHHS
Pa3BEePTHIBAHUS BBIYMCIUTEIBHBIX 3a/ad W YIPOIICHUS MOMIEPKKUA TPUA-CaiiTaMu OONBIIOr0 KOJINYECTBA
BHUPTYaJIbHBIX opranu3anui. [Togxon “o0nayHble BRIYUCICHHS B TPUI~ BHEAPESH M MPOIIET TECTUPOBAHUE B
YKpPanHCKON HAIlMOHANBHOW TPU-CUCTEME, KOTOPasl ABIISETCS YaCThIO €BPOIIEHCKON rpua-MHPPACTPYKTYPHI.
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Lukas Krawczyk, Erik Kamsties. Anmapatasle MoaeJu AJs aBTOMATH3HPOBAHHOIO
pacnpesejieHusi U OTOOPa:KeHHsI B MHOTOSII€PHBIX CHCTEMAaX C HMCHOJB30BAHMEM MATeMaTHYeCKHX
AJNropuTMOB, Mecoynapoonuiii ycyprnan Komnvromunz, Tom. 12, Beimyck 4, 2013, c. 340-347.

MHorosiiepHble  TPOLECCOPhl MPEAOCTABIIAIOT HECKOJIBKO OCHOBHBIX IPEMMYILIECTB BO BCTPOEHHBIX
cucremax. Hampumep, oHn 00ecnednBarOT JTydlIylo 3HEProddeKTUBHOCT U OONBIIYIO BBIYMCIUTEIBHYIO
MOIIHOCTh MO CPaBHEHUIO C OIHOANEPHBIMH TpoueccopamMu. OnHAKO, 3TH NperMyLIecTBa HE JAAIOTCS
OecruiaTHO: IMporpamMMa J0JbKHa ObITh pasjeieHa Ha 3aaui, KOTOpble MOTYT OBITh BHIITOJHEHBI MapauIeIbHO
Ha pasHbIX Aapax. Pacmpenenenue nporpaMMHOro o0ecriedeH s 1 OTPaKEHUE ero YacTed Ha Aapax sSBISIeTCS
HETPUBHAIBHOM 3afayelf, TpeOylomiedl IeTanbHBIX 3HAHUM O 0a30BOM amnmapaTtHylo IUlaTgopmy, B
YaCTHOCTH, O KOIUYECTBE A1Ep, UX OBICTPOACHCTBHHM, HOCTYITHOW MaMATH U T.A. JTa HHPOpMAIHs 00BIYHO
XpaHWUTCS B cnpaBoyHHKax. Eciu sta nHpopmaius Oyner HocTynHa KOMIBIOTEPHOW MOIENU (HA30BEM 3TO
MOJIeTI0I0 ammapaTHBIX CPEINCTB), TO paclpelelieHHe 3aJad M WX OTpaKeHHWE Ha SApax MOryT OBITH
aBTOMaTHU3UpOBaHbl. B 3TOil cTaThe MBI mpemaraeM MOAENb alllapaTHBIX CPEICTB W WUIIOCTPUPYEM €€ Ha
npUMepe MHOTOAlIepHBIX TmpoueccopoB Freescale. Mcmonp3oBaHne Mopaenu amnmapaTHBIX CPEICTB IPH
pacrupenencHuy, OTPaKEHWW W TeHepaluu KoJa NPOWUIIOCTPUPOBAHO Ha TPHUMEPE TECTOBOIO
HCCIIEIOBAHHUS.

Volodymyr Turchenko, Vladyslav Shultz, Iryna Turchenko, Richard M. Wallace, Mehdi
Sheikhalishahi, Jose Luis Vazquez-Poletti, Lucio Grandinetti. IIporno3upoBanne meHbI pecypcoB
00JIaYHBIX BBIYMCIEHUII € HCHOJb30BAaHHEM HEMPOHHBIX ceTeil, Mexcoynapoonslit  Jncypuan
Komnvromunez, tom. 12, spinyck 4, 2013, c. 348-358.

[Iporpecc B cepBHCHO-OPUEHTHPOBAHHBIX APXUTEKTypax, BUPTYyaJIH3allH, BBICOKOCKOPOCTHBIX CETAX M
00JIaYHBIX BBIYMCIICHUAX NPHUBEN K MOSBICHUIO IMPHUBIEKATEIbHBIX IUIATHBIX cepBUCOB. IlnaHupoBanue
BBIUMCIIUTEIBHBIX 33124 B TAKHUX CHCTEMax SBJSIETCS PE3YylbTaTOM AayKIHOHHBIX TOPIOB 3a PECYPCHI
BBIYUCIIUTEIBHOrO BpeMeHru. Komnanus AMa30H ycTaHOBMIIA NPAKTHUKY TaKUX ayKIMOHHBIX TOPrOB AJS MX
ceppuca, mon HaszBaHueMm Elastic Cloud Computing (EC2). IlomoOHble MeTOIBI ayKIIMOHHBIX TOPTOB
CYILIECTBYIOT B APYT'HX NMPOBANHAEPOB O0JIAUHBIX BBIYMCIEHHUH, a TaKkke Y OpOKepOB 00JauHBIX U KJIACTEPHBIX
BbruucieHnd kak SpotCloud. AyKIuOHHBIE TOPTH 3a BBIYMCIHUTENBHBIE PECYPCHI NPUBOIAT K CO3IAHHUIO
CIIOKHBIX MOJIEJIEH LIeHBl pecypca, MMEIOIINe CleHUalIbHbIe CTPaTeruu i o0ecredeHus MoTpeOHOCTel B
M30BITOYHBIX pecypcax. B 3Toif craThe MBI OCYIIECTBUIM 0030p TPOBaHAEpPOB, OOECTIEUMBAIOIIIX
(¢opMHpOBaHME LEHBI 0 AYKUHMOHHBIM MPUHIMIIAM, M TNPEICTABUIM INPOTHOUPYIOLUIME MOIEIU Ui
Oyaywiero KpaTrkOCpOYHOTO M CPEIHECPOYHOrO IPOTHO3WPOBAHMS ILIEHBI BBIYUCINUTEIBHBIX PECYPCOB C
MTOMOIIBIO HEHPOHHBIX ceTeld. MBI O0eclediiii BBICOKYIO TOYHOCTb MPOTHO3a Oymymiedl HeHBl I ero
HCTIOJIB30BaHMSI B AyKLIIMOHHBIX TOPraX 3a BBIYHCIUTEIbHBIE PECYPCHI.
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