
18.09.2012

1

Topic 1: Computer Architecture
Dr. Ihor Paliy

Assistant Professor, Director of

American-Ukrainian School for Computer Science

Email: ipl@tneu.edu.ua

Web: www.umcs.maine.edu/~aus

Ternopil, 2012

Algorithmization and
Programming

Ternopil National Economic University
American-Ukrainian School of Computer Science

Outline

� Computer Architecture Definition

� Types of Computer Architectures

� Instruction Set Architecture

� Von Neumann Architecture

2

18.09.2012

2

Computer Architecture Definition

� Computer architecture is a detailed
specification of the computational,
communication, and data storage elements
(hardware) of a computer system, how those
components interact (machine organization),
and how they are controlled (instruction set).

� The term architecture as applied to computer
design, was first used in 1964 by Gene
Amdahl, G. Anne Blaauw, and Frederick
Brooks, Jr., the designers of the IBM
System/360. They coined the term to refer to
those aspects of the instruction set available to
programmers, independent of the hardware on
which the instruction set was implemented.

3

Computer Architecture Definition
(continue)

� Instruction set architecture (ISA) is the code that a central processor
reads and acts upon. It is the machine language (or assembly
language), including the instruction set, word size, memory address
modes, processor registers, and address and data formats.

� Machine Organization (Microarchitecture) describes the data paths,
data processing elements and data storage elements, and describes
how they should implement the ISA. The size of a computer's cache for
instance, is an organizational issue that generally has nothing to do
with the ISA.

� Hardware (System Design) includes:

� Data paths, such as computer buses and switches

� Memory controllers and hierarchies

� Data processing other than the CPU, such as direct memory access

� Miscellaneous issues such as virtualization or multiprocessing.

4

18.09.2012

3

Types of Computer Architectures

� There are many types of computer
architectures:

� Quantum computer vs Chemical computer

� Scalar processor vs Vector processor

� Non-Uniform Memory Access (NUMA)
computers

� Register machine vs Stack machine

� Harvard architecture vs von Neumann
architecture

� Cellular architecture

� The quantum computer architecture holds the
most promise to revolutionize computing.

5

Instruction Set Architecture

� The ISA is the interface between the software and hardware.

� It is the set of instructions that bridges the gap between high level
languages and the hardware.

� For a processor to understand a command, it should be in binary and
not in High Level Language. The ISA encodes these values.

� The ISA also defines the items in the computer that are available to a
programmer. For example, it defines data types, registers, addressing
modes, memory organization etc.

� Register are high addressing modes are the ways in which the
instructions locate their operands.

6

18.09.2012

4

Instruction Set Architecture
(continue)

� ISA is the part of the computer architecture related to programming,
including the native data types, instructions, registers, addressing
modes, memory architecture, interrupt and exception handling, and
external I/O.

� An ISA includes a specification of the set of opcodes (machine
language), and the native commands implemented by a particular
processor.

� Computers with different microarchitectures can share a common
instruction set. For example, the Intel Pentium and the AMD Athlon
implement nearly identical versions of the x86 instruction set, but have
radically different internal designs.

7

Instruction Set Architecture
(continue)

Some operations available in most instruction sets include:

� Data handling and Memory operations

� set a register (a temporary "scratchpad" location in the CPU itself) to a
fixed constant value

� move data from a memory location to a register, or vice versa. This is
done to obtain the data to perform a computation on it later, or to store
the result of a computation.

� read and write data from hardware devices

� Control flow

� branch to another location in the program and execute instructions there

� conditionally branch to another location if a certain condition holds

� indirectly branch to another location, while saving the location of the next
instruction as a point to return to (a call)

8

18.09.2012

5

Instruction Set Architecture
(continue)

� Arithmetic and Logic

� add, subtract, multiply, or divide the values of two registers, placing the
result in a register, possibly setting one or more condition codes in a status
register

� perform bitwise operations, taking the conjunction and disjunction of
corresponding bits in a pair of registers, or the negation of each bit in a
register

� compare two values in registers (for example, to see if one is less, or if
they are equal)

On traditional architectures, an instruction includes an opcode specifying the
operation to be performed, such as "add contents of memory to register",
and zero or more operand specifiers, which may specify registers, memory
locations, or literal data.

More complex operations are built up by combining these simple instructions,
which (in a von Neumann architecture) are executed sequentially, or as
otherwise directed by control flow instructions.

9

Instruction Set Architecture
(continue)

10

Original 8086/8088 instruction set

Instruction Meaning Opcode

ADD Add

HLT Enter halt state 0xF4

INC Increment by 1

JMP Jump

LOOP Loop control

MOV copies data from one location to another

MUL Unsigned multiply

POP Pop data from stack 0x0F

RET Return from procedure

WAIT Wait until not busy

18.09.2012

6

Von Neumann Architecture

� Charles Babbage invented the Analytic Engine. This device would be
programmable, thanks to the punched card technology. Babbage called
the two main parts of his Analytic Engine the "Store" and the "Mill“. The
Store was where numbers were held and the Mill was where they were
"woven" into new results. In a modern computer they are called
the memory unit and the central processing unit (CPU).

� Von Neumann architecture describes a design architecture for an
electronic digital computer with subdivisions of a central arithmetic
part, a central control part, a memory to store both data and
instructions, external storage, and input and output mechanisms.

� The phrase Von Neumann architecture derives from a paper circulated
under the name of the scientist John von Neumann that was entitled
First Draft of a Report on the EDVAC dated June 30, 1945.

11

Von Neumann Architecture (continue)

� In the Von Neumann computer an instruction fetch and a data
operation cannot occur at the same time because they share a common
bus. This is referred to as the Von Neumann bottleneck and often limits
the performance of the system.

� A computer belongs to Von Neumann architecture if:

� Program and data store in one common memory

� Each memory cell has unique number (address)

� Instructions and data are used in different ways but has the same
memory codding style and appearance structure.

� Each program is executed subsequently starting from the first
instruction. Control passing instructions are used to change this
sequence.

12

18.09.2012

7

Von Neumann Architecture (continue)

� A stored-program digital computer is one that keeps its programmed
instructions, as well as its data, in read-write, random-access memory
(RAM).

� Stored-program computers were an advancement over the program-
controlled computers of the 1940s, such as the Colossus and the ENIAC,
which were programmed by setting switches and inserting patch leads
to route data and to control signals between various functional units. In
the vast majority of modern computers, the same memory is used for
both data and program instructions.

� The design of a Von Neumann architecture is simpler than the more
modern Harvard architecture which is also a stored-program system
but has one dedicated address and data buses for memory, and
another set of address and data buses for fetching instructions.

13

Von Neumann Architecture (continue)
14

18.09.2012

8

Topic 2: Algorithms
Dr. Ihor Paliy

Assistant Professor, Director of

American-Ukrainian School for Computer Science

Email: ipl@tneu.edu.ua

Web: www.umcs.maine.edu/~aus

Ternopil, 2012

Algorithmization and
Programming

Ternopil National Economic University
American-Ukrainian School of Computer Science

Outline

� Algorithm Definition

� Algorithm Properties

� Algorithms Classification

� Expressing Algorithms

� Algorithm Flowchart

� Flowchart Building Blocks

� Algorithm Example

� Algorithm Implementation

16

18.09.2012

9

Algorithm Definition
17

Algorithm Definition (continue)

� Algorithm (originating from the famous Persian mathematician
Muhammad ibn Mūsā al-Khwārizmī) is a finite set of well-defined
instructions for problem solving. Algorithms are used for calculation,
data processing, and automated reasoning.

� Starting from an initial state and initial input (perhaps empty), the
instructions describe a computation that, when executed, will proceed
through a finite number of well-defined successive states, eventually
producing "output" and terminating at a final ending state.

� Algorithms are essential to the way computers process data. Many
computer programs contain algorithms that detail the specific
instructions a computer should perform (in a specific order) to carry out
a specified task, such as calculating employees' paychecks or printing
students' report cards.

18

18.09.2012

10

Algorithm Definition (continue)

� Typically, when an algorithm is associated with processing information,
data is read from an input source, written to an output device, and/or
stored for further processing.

� Any conditional steps must be systematically dealt with, case-by-case;
the criteria for each case must be clear (and computable)

� The order of computation will always be critical to the functioning of
the algorithm. Instructions are usually assumed to be listed explicitly,
and are described as starting "from the top" and going "down to the
bottom", an idea that is described more formally by flow of control.

19

Algorithm Properties

1) Finiteness - an algorithm terminates after a finite numbers of steps

2) Definiteness - each step in algorithm is unambiguous. This means that
the action specified by the step cannot be interpreted (explain the
meaning of) in multiple ways & can be performed without any
confusion

3) Input - an algorithm accepts zero or more inputs

4) Output - it produces at least one output

5) Effectiveness - it consists of basic instructions that are realizable. This
means that the instructions can be performed by using the given inputs
in a finite amount of time

20

18.09.2012

11

Algorithms Classification
21

� By implementation:

� Recursion / iteration - a recursive algorithm is one that invokes
(makes reference to) itself repeatedly until a certain condition
matches, which is a method common to functional programming.
Iterative algorithms use repetitive constructs like loops and sometimes
additional data structures like stacks to solve the given problems.

� Logical - an algorithm may be viewed as controlled logical
deduction.

� Serial / parallel / distributed - parallel algorithms take advantage of
computer architectures where several processors can work on a
problem at the same time, whereas distributed algorithms utilize
multiple machines connected with a network.

Algorithms Classification (continue)
22

� Deterministic / non-deterministic - deterministic algorithms solve the
problem with exact decision at every step of the algorithm whereas
non-deterministic algorithms solve problems via guessing although
typical guesses are made more accurate through the use of
heuristics.

� Exact / approximate - while many algorithms reach an exact solution,
approximation algorithms seek an approximation that is close to the
true solution.

� Quantum - The term is usually used for those algorithms which seem
inherently quantum, or use some essential feature of quantum
computation such as quantum superposition or quantum
entanglement.

18.09.2012

12

Expressing Algorithms

� Algorithms can be expressed in many kinds of notation:

� Natural languages

� Pseudocode

� Flowcharts

� Programming languages

� Control tables

� Natural language expressions of algorithms tend to be verbose and
ambiguous, and are rarely used for complex or technical algorithms.

� Pseudocode, flowcharts and control tables are structured ways to express
algorithms that avoid many of the ambiguities common in natural language
statements.

� Programming languages are primarily intended for expressing algorithms in a
form that can be executed by a computer, but are often used as a way to
define or document algorithms.

23

Algorithm Flowchart

� Flowchart is a type of diagram that represents an algorithm, showing
the steps as boxes of various kinds (process operations), and their
order by connecting these with arrows (control flow).

� This diagrammatic representation can give a step-by-step solution to a
given problem.

� Flowcharts are used in analyzing, designing, documenting or managing
a process or program in various fields.

� Flowcharts help visualize what is going on and thereby help the viewer
to understand a process, and perhaps also find flaws, bottlenecks, and
other less-obvious features within it.

24

18.09.2012

13

Flowchart Building Blocks
25

Start/end point of an algorithm

Flowchart Building Blocks (continue)
26

Operation

18.09.2012

14

Flowchart Building Blocks (continue)
27

Input/output operation

Flowchart Building Blocks (continue)
28

Condition

18.09.2012

15

Flowchart Building Blocks (continue)
29

Branching

Flowchart Building Blocks (continue)
30

Loop (with condition before operation)

18.09.2012

16

Flowchart Building Blocks (continue)
31

Loop (with condition after operation)

Flowchart Building Blocks (continue)
32

Loop (with known number of iterations)

18.09.2012

17

Flowchart Building Blocks (continue)
33

Reference

Flowchart Building Blocks (continue)
34

Subprocess

18.09.2012

18

Flowchart Building Blocks (continue)
35

Document

Algorithm Example
36

Division of two numbers

18.09.2012

19

Algorithm Implementation

� Algorithms may be implemented by the following means:

� computer program (for most algorithms)

� electrical circuit

� mechanical device

� neural network (for example, the human brain implementing
arithmetic or an insect looking for food), etc.

37

Topic 3: Introduction to C++
Dr. Ihor Paliy

Assistant Professor, Director of

American-Ukrainian School for Computer Science

Email: ipl@tneu.edu.ua

Web: www.umcs.maine.edu/~aus

Ternopil, 2012

Algorithmization and
Programming

Ternopil National Economic University
American-Ukrainian School of Computer Science

18.09.2012

20

Outline

� General Definitions

� C++ History

� C++ Philosophy

� Hello World!

� Variables

� Fundamental Data Types

� Variables Declaration

� Variables Scope

� Variables Initialization

� Pointers

� Constants

39

Outline (continue)

� Arithmetic Operations

� Relational Operators

� Logical Operators

� Increment/Decrement Operators

� Assignment Operator

� Conditional Operator

� Comma Operator

� The sizeof Operator

� Operator Precedence

� Basic I/O Operations

40

18.09.2012

21

General Definitions

� A digital computer is a useful tool for solving a great variety of
problems.

� A solution to a problem is called an algorithm; it describes the
sequence of steps to be performed for the problem to be solved.

� An algorithm should be expressed in special manner to be
recognizable by a computer. The only language really understood by
a computer is its own machine language.

� Programs expressed in the machine language are said to be
executable. A program written in any other language needs to be first
translated to the machine language before it can be executed.

41

General Definitions (continue)

� A machine language is far too cryptic to be suitable for the direct use
of programmers. A further abstraction of this language is the assembly

language which provides mnemonic names for the instructions and a
more intelligible notation for the data. An assembly language program
is translated to machine language by a translator called an assembler.

� Even assembly languages are difficult to work with. High-level

languages such as C++ provide a much more convenient notation for
implementing algorithms.

� A program written in a high-level language is translated to an
executable program by a translator called a compiler.

42

18.09.2012

22

General Definitions (continue)
43

C++ History

� C++ is a statically typed, free-form, multi-paradigm, compiled, general-
purpose programming language.

� It is regarded as an intermediate-level language, as it comprises a
combination of both high-level and low-level language features.

� Developed by Bjarne Stroustrup starting in 1979 at Bell Labs, it adds object
oriented features, such as classes, and other enhancements to the C
programming language. Originally named C with Classes, the language was
renamed C++ in 1983.

� C++ is one of the most popular programming languages and is implemented
on a wide variety of hardware and operating system platforms. As an
efficient compiler to native code, its application domains including systems
software, application software, device drivers, embedded software, high-
performance server and client applications, and entertainment software such
as video games.

� C++ has greatly influenced many other popular programming languages,
most notably C# and Java.

44

18.09.2012

23

C++ History (continue)

� The language began as enhancements to C, first adding classes, then
virtual functions, operator overloading, multiple inheritance, templates,
and exception handling among other features.

� After years of development, the C++ programming language
standard was ratified in 1998 as ISO/IEC 14882:1998. The current
standard extending C++ with new features was ratified and published
by ISO in September 2011 as ISO/IEC 14882:2011 (informally known
as C++11).

� C++ is sometimes called a hybrid language. It is possible to write
object oriented or procedural code in the same program in C++. This
has caused some concern that some C++ programmers are still writing
procedural code, but are under the impression that it is object oriented,
simply because they are using C++.

45

C++ Philosophy

� In The Design and Evolution of C++ (1994), Bjarne Stroustrup describes some
rules that he used for the design of C++:

� C++ is designed to be a statically typed, general-purpose language that
is as efficient and portable as C

� C++ is designed to directly and comprehensively support multiple
programming styles (procedural programming, data abstraction, object-
oriented programming, and generic programming)

� C++ is designed to give the programmer choice, even if this makes it
possible for the programmer to choose incorrectly

� C++ is designed to be as compatible with C as possible, therefore
providing a smooth transition from C

� C++ avoids features that are platform specific or not general purpose

� C++ does not incur overhead for features that are not used (the "zero-
overhead principle")

� C++ is designed to function without a sophisticated programming
environment

46

18.09.2012

24

Hello World!

1. // Hello World program

2. #include <iostream>

3. using namespace std;

4. int main() {

5. cout << "Hello, world!“ << endl;

6. return 0;

7. }

47

Hello World! (continue)
48

1. Line comments.

2. Preprocessor directive #include to include the contents of the header
file “iostream” in the program. “iostream” is a standard C++
header file and contains definitions for input and output functions.

3. The “std” namespace is used, therefore we may avoid typing std::
before the namespace’s functions and constants.

4. Declaration of the main function of the program. A function may have
zero or more parameters; these always appear after the function
name, between a pair of brackets. A function may also have a return
type; this always appears before the function name. The return type
for main is int (i.e., an integer number). All C++ console programs
must have exactly one main function. Program execution always
begins from main. {marks the beginning of the body of main.

18.09.2012

25

Hello World! (continue)
49

5. This line is a statement. The end of a statement is always marked with
a semicolon (;). This statement causes the string "Hello World\n" to
be sent to the cout output stream. A string is any sequence of
characters enclosed in double-quotes. endl is a newline constant which
is similar to a carriage return on a type writer. A stream is an object
which performs input or output. cout is the standard output stream in
C++ (usually means your computer monitor screen). The symbol << is
an output operator which takes an output stream as its left operand
and an expression as its right operand, and causes the value of the
latter to be sent to the former. In this case, the effect is that the string
"Hello World” is sent to cout, causing it to be printed on the computer
monitor screen.

6. Returns function value according to the function type.

7. This brace marks the end of the body of main.

Variables

� Variable as a portion of memory to store a determined value of the
predefined type.

� Each variable needs an identifier (name) that distinguishes it from the others.

� A valid identifier is a sequence of one or more letters, digits or underscore
characters (_). Neither spaces nor punctuation marks or symbols can be part
of an identifier. In addition, variable identifiers always have to begin with a
letter or underline character (_).

� Variable identifiers cannot match any keyword of the C++ language nor
your compiler's specific ones, which are reserved keywords:

50

asm, auto, bool, break, case, catch, char, class, const, const_cast, continue, default, delete,

do, double, dynamic_cast, else, enum, explicit, export, extern, false, float, for, friend, goto,

if, inline, int, long, mutable, namespace, new, operator, private, protected, public, register,

reinterpret_cast, return, short, signed, sizeof, static, static_cast, struct, switch, template, this,

throw, true, try, typedef, typeid, typename, union, unsigned, using, virtual, void, volatile,

wchar_t, while

18.09.2012

26

Variables (continue)

� Very important: The C++ language is a "case sensitive" language. That
means that an identifier written in capital letters is not equivalent to another
one with the same name but written in small letters. Thus, for example, the
RESULT variable is not the same as the result variable or the Result variable.
These are three different variable identifiers.

51

#include <iostream>

using namespace std;

int main() {

int a, b, result;

a = 5;

b = 2;

a = a + 1;

result = a - b;

cout << result << endl;

return 0;

}

Fundamental Data Types
52

Type Keyword

Boolean bool

Character char

Integer int

Floating point float

Double floating point double

Valueless void

Wide character wchar_t

Several of the basic types can be modified using one or more of these type
modifiers:
• signed
• unsigned
• short
• long

18.09.2012

27

Fundamental Data Types (continue)
53

Type Typical Bit Width Typical Range

char 1byte -127 to 127 or 0 to 255

unsigned char 1byte 0 to 255

signed char 1byte -127 to 127

int 4bytes -2147483648 to 2147483647

unsigned int 4bytes 0 to 4294967295

signed int 4bytes -2147483648 to 2147483647

short int 2bytes -32768 to 32767

unsigned short int Range 0 to 65,535

signed short int Range -32768 to 32767

long int 4bytes -2,147,483,647 to 2,147,483,647

signed long int 4bytes same as long int

unsigned long int 4bytes 0 to 4,294,967,295

float 4bytes +/- 3.4e +/- 38 (~7 digits)

double 8bytes +/- 1.7e +/- 308 (~15 digits)

long double 8bytes +/- 1.7e +/- 308 (~15 digits)

wchar_t 2 or 4 bytes 1 wide character

Variables Declaration

� In order to use a variable in we must first declare it specifying which
data type we want it to be.

� If you are going to declare more than one variable of the same type,
you can declare all of them in a single statement by separating their
identifiers with commas.

� The integer data types char, short, long and int can be either signed or
unsigned. Signed types can represent both positive and negative
values, whereas unsigned types can only represent positive values (and
zero). This can be specified by using either the specifier signed or the
specifier unsigned before the type name.

54

int a;

float mynumber;

int a, b, c;

18.09.2012

28

Variables Scope
55

Variables Initialization

� When declaring a regular local variable, its value is by default
undetermined. But you may want a variable to store a concrete value
at the same moment that it is declared. In order to do that, you can
initialize the variable.

� Initialization may be done after declaration later in the program, but
it’s preferable to assign some initial value together during the
declaration.

56

int a = 0; // c-like initialization

int a (0); // constructor initialization

18.09.2012

29

Pointers

� Pointer is a variable which value is an address of another variable.

� & is the reference operator and can be read as "address of“.

� * is the dereference operator and can be read as "value pointed by“

57

int andy, fred;

int *ted; // pointer declaration

andy = 25; // andy==25; fread==rand; *ted==rand

fred = andy; // andy==25; fread==25; *ted==rand

ted = &andy; // andy==25; fread==25; *ted==25

Pointers (continue)
58

int firstvalue = 5, secondvalue = 15;

int *p1 = null, *p2 = null;

p1 = &firstvalue; // p1 = address of firstvalue

p2 = &secondvalue; // p2 = address of secondvalue

*p1 = 10; // value pointed by p1 = 10

*p2 = *p1; // value pointed by p2 = value pointed by p1

p1 = p2; // p1 = p2 (value of pointer is copied)

*p1 = 20; // value pointed by p1 = 20

cout << "firstvalue is " << firstvalue << endl;

cout << "secondvalue is " << secondvalue << endl;

firstvalue is 10

secondvalue is 20

18.09.2012

30

Constants

� Constant is an object with a value that can’t be altered by the program
during its execution.

� Constants can be untyped or typed. In C and C++, macros provide the
former, while const provides the latter:

59

// Defined constant using the preprocessor directive

#define PI 3.1415926535

// Declared constant

const float pi2 = 3.1415926535;

Arithmetic Operations

� If both operands are integers then the result will be an integer (except
for %). However, if one or both of the operands are reals then the
result will be a real.

60

Operator Name Example

+ Addition 12 + 4.9 // gives 16.9

- Subtraction 3.98 - 4 // gives -0.02

* Multiplication 2 * 3.4 // gives 6.8

/ Division 9 / 2.0 // gives 4.5

% Remainder 13 % 3 // gives 1

9 / 2 // gives 4, not 4.5!

-9 / 2 // gives -5, not -4!

18.09.2012

31

Relational Operators
61

Operator Name Example

== Equality 5 == 5 // gives 1

!= Inequality 5 != 5 // gives 0

< Less Than 5 < 5.5 // gives 1

<= Less Than or Equal 5 <= 5 // gives 1

> Greater Than 5 > 5.5 // gives 0

>= Greater Than or Equal 6.3 >= 5 // gives 1

� C++ provides six relational operators for comparing numeric
quantities.

Logical Operators
62

� C++ provides three logical operators for combining logical expression.

Operator Name Example

! Logical Negation !(5 == 5) // gives 0

&& Logical And 5 < 6 && 6 < 6 // gives 1

|| Logical Or 5 < 6 || 6 < 5 // gives 1

18.09.2012

32

Increment/Decrement Operators
63

� The increment (++) and decrement (--) operators provide a
convenient way of, respectively, adding and subtracting 1 from a
numeric variable.

� When used in prefix form, the operator is first applied and the
outcome is then used in the expression. When used in the postfix form,
the expression is evaluated first and then the operator applied.

int k = 5;

Operator Name Example

++ Auto Increment (prefix) ++k + 10 // gives 16

++ Auto Increment (postfix) k++ + 10 // gives 15

-- Auto Decrement (prefix) --k + 10 // gives 14

-- Auto Decrement (postfix) k-- + 10 // gives 15

Assignment Operator
64

� The assignment operator is used for storing a value at some memory
location. Its left operand should be anything that denotes a memory
location in which a value may be stored (variable), and its right
operand may be an arbitrary expression.

Operator Example Equivalent To

= n = 25

+= n += 25 n = n + 25

-= n -= 25 n = n - 25

*= n *= 25 n = n * 25

/= n /= 25 n = n / 25

%= n %= 25 n = n % 25

18.09.2012

33

Conditional Operator
65

� General form: operand1 ? operand2 : operand3

int m = 1, n = 2;

int min = (m < n ? m : n); // min receives 1

Comma Operator
66

� Multiple expressions can be combined into one expression using the
comma operator. The comma operator takes two operands. It first
evaluates the left operand and then the right operand, and returns the
value of the latter as the final outcome.

� Here when m is less than n, mCount++ is evaluated and the value of m
is stored in min. Otherwise, nCount++ is evaluated and the value of n is
stored in min.

int m, n, min;

int mCount = 0, nCount = 0;

//...

min = (m < n ? mCount++, m : nCount++, n);

18.09.2012

34

The sizeof Operator
67

� sizeof() is an operator for calculating the size of any variable or type.
cout << "char size = " << sizeof(char) << " bytes\n";

cout << "char* size = " << sizeof(char*) << " bytes\n";

cout << "short size = " << sizeof(short) << " bytes\n";

cout << "int size = " << sizeof(int) << " bytes\n";

cout << "long size = " << sizeof(long) << " bytes\n";

cout << "float size = " << sizeof(float) << " bytes\n";

cout << "double size = " << sizeof(double) << " bytes\n";

cout << "1.55 size = " << sizeof(1.55) << " bytes\n";

cout << "HELLO size = " << sizeof("HELLO") << " bytes\n";

char size = 1 bytes

char* size = 2 bytes

short size = 2 bytes

int size = 2 bytes

long size = 4 bytes

float size = 4 bytes

double size = 8 bytes

1.55 size = 8 bytes

HELLO size = 6 bytes

Operator Precedence
68

18.09.2012

35

Basic I/O Operations
69

� iostream library provides standard input stream (cin) and standard output
stream (cout) which are used as left operands and two useful operators for
this purpose: >> for input and << for output.

#include <iostream>

using namespace std;

void main() {

int workDays = 5;

float workHours = 7.5, payRate, weeklyPay;

cout << "What is the hourly pay rate? ";

cin >> payRate;

weeklyPay = workDays * workHours * payRate;

cout << "Weekly Pay = “ << weeklyPay << endl;

}

What is the hourly pay rate? 33.55

Weekly Pay = 1258.125

Topic 4: Control Structures
Dr. Ihor Paliy

Assistant Professor, Director of

American-Ukrainian School for Computer Science

Email: ipl@tneu.edu.ua

Web: www.umcs.maine.edu/~aus

Ternopil, 2012

Algorithmization and
Programming

Ternopil National Economic University
American-Ukrainian School of Computer Science

18.09.2012

36

Outline

� General Structure of C++ Program

� Simple and Compound Statements

� The if Statement

� The switch Statement

� The while Statement

� The do Statement

� The for Statement

� The continue Statement

� The break Statement

� The goto Statement

� The return Statement

71

General Structure of C++ Program

1. Documentation Section

2. Preprocessor directives or C++ preprocessor

� Link section

� Definition Section

3. Global Declaration Section

4. Declaration of the main C++ program function main()

5. The main function body beginning using {

� local variable declaration

� Executable part

6. End of the main function body using }

7. Sub-program section with user-defined functions

� Function definition 1

…

� Function definition n

72

18.09.2012

37

Simple and Compound Statements

� A simple statement is a computation terminated by a semicolon.

� Multiple statements can be combined into a compound statement by
enclosing them within braces.

� Compound statements: (i) allow us to put multiple statements in places
where otherwise only single statements are allowed, and (ii) allow us to
introduce a new variable’s scope in the program.

73

int i; // declaration statement

++i; // this has a side-effect

double d = 10.5; // declaration statement

d + 5; // useless statement!

{

int min, i = 10, j = 20;

min = (i < j ? i : j);

cout << min << '\n';

}

The if Statement

The if statement provides a way for execution of a statement
depending upon a condition being satisfied.

1. if (expression)

statement;

� First expression is evaluated. If the outcome is nonzero then statement is
executed. Otherwise, nothing happens.

2. if (expression)

statement1;

else

statement2;

� First expression is evaluated. If the outcome is nonzero then statement1
is executed. Otherwise, statement2 is executed.

74

18.09.2012

38

The if Statement (continue)

� If statements may be nested by having an if statement appear inside
another if statement.

75

if (callHour > 6) {

if (callDuration <= 5)

charge = callDuration * tarrif1;

else

charge = 5 * tarrif1 + (callDuration - 5) * tarrif2;

} else

charge = flatFee;

The switch Statement

� The switch statement provides a way of choosing between a set of
alternatives, based on the value of an expression.

switch (expression) {

case constant1:

statements;

...

case constant N:

statements;

default:

statements;

}

76

18.09.2012

39

The switch Statement (continue)

� First expression (called the switch tag) is evaluated, and the outcome is
compared to each of the numeric constants (called case labels), in the
order they appear, until a match is found.

� The statements following the matching case are then executed.

� Note the plural: each case may be followed by zero or more
statements (not just one statement). Execution continues until either a
break statement is encountered or all intervening statements until the
end of the switch statement are executed.

� The final default case is optional and is exercised if none of the earlier
cases provide a match.

77

The switch Statement (continue)
78

switch (operator) {

case '+':

result = operand1 + operand2;

break;

case '-':

result = operand1 - operand2;

break;

case '*':

result = operand1 * operand2;

break;

case '/':

result = operand1 / operand2;

break;

default:

cout << "unknown operator: " << operator << '\n';

}

18.09.2012

40

The while Statement

� The while statement provides a way of repeating an statement while a
condition holds.

while (expression)

statement;

� First expression (called the loop condition) is evaluated. If the outcome
is nonzero then statement (called the loop body) is executed and the
whole process is repeated. Otherwise, the loop is terminated.

79

The while Statement (continue)
80

n = 5; i = 1;

sum = 0;

while (i <= n) {

sum += i;

i++;

}

Iteration i n i <= n sum

First 1 5 1 1

Second 2 5 1 3

Third 3 5 1 6

Fourth 4 5 1 10

Fifth 5 5 1 15

Sixth 6 5 0

18.09.2012

41

The do Statement

� The do statement (also called do loop) is similar to the while
statement, except that its body is executed first and then the loop
condition is examined.

do

statement;

while (expression);

� First statement is executed and then expression is evaluated. If the
outcome of the latter is nonzero then the whole process is repeated.
Otherwise, the loop is terminated.

81

do {

cout << “Input n: ”;

cin >> n;

} while (n != 0);

The for Statement

� The for statement (for loop) is similar to the while statement, but has
two additional components: an expression which is evaluated only once
before everything else, and an expression which is evaluated once at
the end of each iteration.

for (expression1; expression2; expression3)

statement;

� First expression1 is evaluated. Each time round the loop, expression2 is
evaluated. If the outcome is nonzero then statement is executed and
expression3 is evaluated. Otherwise, the loop is terminated.

� In this example, i is usually called the loop variable.

82

sum = 0;

for (i = 0; i < n; i++)

sum += i;

18.09.2012

42

The for Statement (continue)

� C++ allows the expression1 in a for loop to be a variable definition.

� Any of the three expressions in a for loop may be empty. For example,
removing the first and the third expression gives us something identical
to a while loop:

� Removing all the expressions gives us an infinite loop:

� The comma operator is used for loops with multiple loop variables to
separate their expressions:

� for loops may be nested.

83

for (; i != 0;) // is equivalent to: while (i != 0)

for (;;) // infinite loop as well as: while(1)

for (i = 0, j = 0; i + j < n; ++i, ++j)

The continue Statement

� The continue statement terminates the current iteration of a loop
instead jumps to the next iteration. It applies to the loop immediately
enclosing the continue statement.

� For example, a loop which repeatedly reads in a number, processes it
but ignores negative numbers, and terminates when the number is zero:

� When the continue statement appears inside nested loops, it applies to
the loop immediately enclosing it, and not to the outer loops.

84

do {

cin >> num;

if (num < 0) continue;

// process num here...

} while (num != 0);

18.09.2012

43

The break Statement

� A break statement may appear inside a loop (while, do, or for) or a
switch statement. It causes a jump out of these constructs, and hence
terminates them. Like the continue statement, a break statement only
applies to the loop or switch immediately enclosing it.

� For example, suppose we wish to read in a user password, but would
like to allow the user a limited number of attempts:

� Here we have assumed that there is a function called Verify which
checks a password and returns true if it is correct, and false otherwise.

85

for (i = 0; i < attempts; i++) {

cout << "Please enter your password: ";

cin >> password;

if (Verify(password)) // check password for correctness

break; // drop out of the loop

cout << "Incorrect!\n";

}

The goto Statement

� The goto statement provides the lowest-level of jumping.

goto label;

� label is an identifier which marks the jump destination of goto. The
label should be followed by a colon and appear before a statement
within the same function as the goto statement itself.

86

for (i = 0; i < attempts; ++i) {

cout << "Please enter your password: ";

cin >> password;

if (Verify(password)) // check password for correctness

goto out; // drop out of the loop

cout << "Incorrect!\n";

}

out:

// etc...

18.09.2012

44

The return Statement

� The return statement enables a function to return a value to its caller.

return expression;

� expression denotes the value returned by the function. The type of this
value should match the return type of the function. For a function whose
return type is void, expression should be empty:

return;

� The return value of main is what the program returns to the operating
system when it completes its execution. Under UNIX, for example, it its
conventional to return 0 from main when the program executes without
errors. Otherwise, a non-zero error code is returned.

87

