Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://dspace.wunu.edu.ua/handle/316497/32008
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorVazquez, Roberto A.-
dc.contributor.authorSossa, Humberto-
dc.date.accessioned2018-12-05T09:47:54Z-
dc.date.available2018-12-05T09:47:54Z-
dc.date.issued2009-
dc.identifier.citationVazquez, R. Associative memories network for face recognition and object recognition [Text] / Roberto A. Vazquez, Humberto Sossa // Computing = Комп’ютинг. - 2009. - Vol. 8, is. 1. - P. 53-60.uk_UA
dc.identifier.urihttp://dspace.tneu.edu.ua/handle/316497/32008-
dc.description.abstractAn associative memory (AM) is a special kind of neural network that allows associating an output pattern with an input pattern. Some problems require associating several output patterns with a unique pattern. Classical associative and neural models cannot solve this simple task and less if these patterns are complex images, for example faces. In this paper a network of AMs to recall a collection of patterns is proposed. The accuracy of the proposal is tested with two benchmarks. One is composed by 20 objects and the other is composed by 20 images of 15 different people faces. First the all, the benchmarks are split into several collections and then this collections are used to train the network of AMs. During training an image of a collection is associated with the rest of the images belonging to the same collection. Once trained the network we expected to recover a collection of images by using as an input pattern any image belonging to the collection.uk_UA
dc.publisherТНЕУuk_UA
dc.subjectAssociative memoriesuk_UA
dc.subjectface recognitionuk_UA
dc.subjectobject recognitionuk_UA
dc.titleAssociative memories network for face recognition and object recognitionuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Комп'ютинг 2009 рік. Том 8. Випуск 1

Файли цього матеріалу:
Файл Опис РозмірФормат 
Vazquez.pdf242.63 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.