
An Easy-to-use, Scalable and Robust Messaging
Solution for Smart Grid Research

Ferdinand von Tüllenburg, Jia Lei Du, Georg Panholzer
Salzburg Research Forschungsgesellschaft mbH, Salzburg, AUSTRIA,

email: {ferdinand.tuellenburg, jia.du, georg.panholzer}@salzburgresearch.at

 Abstract: Smart Grids are characterized by tight
coupling and intertwining between the electrical system
and information and communication technology. Due to
this, application layer messaging systems are regularly
required for many Smart Grid applications. Especially in
research messaging solutions are setup from scratch. In
this paper we propose a generic and easy to setup message
oriented middleware (MOM) solution providing robust
and scalable messaging.
 Keywords: Smart Grid, Messaging API, Middleware

I. INTRODUCTION
Future electrical power systems will be characterized by a

new control paradigm: Decentralized controllable power
sources such as batteries, wind generators, and PV systems
on production side and controllable loads on consumption
side will be constantly monitored and operated depending on
the current grid state in order to increase overall efficiency
and ensure power quality. Part of this development is the
augmentation of the electrical system is with information and
communication technology (ICT).

For the sake of data transfers between entities of the ICT
subsystem usually a messaging solution is required providing
an infrastructure to distribute messages correctly between
instances also including definitions of message formats.

Especially for research projects in the field of Smart Grids,
it is apparent that solutions for data transmission systems are
redeveloped every time – a time consuming task when
considering that the data transfer system is usually of minor
priority. Due to this, an easy-to-deploy and (re-) usable
messaging solution can be seen as a valuable contribution to
Smart Grid research.

In this paper we introduce our messaging solution
following the concept of a message-oriented middleware
(MOM). As these features are regularly required in Smart
Grid scenarios, the proposed solution provides robust,
reliable, scalable and secure data transfers. All these without
losing focus on ease of use and deployment, as well as
applicability in various Smart Grid scenarios. In addition to
this, we propose an application programming interface (API),
which can be easily used and integrated in the
communicating software components.

MOM solutions in general provide advantages for smart
grid communication with respect to required communication
capabilities (e. g. group communication) high scalability and
high performance [1]. Additionally, one important beneficial
aspect of using MOMs is that agents can focus on their key
tasks of processing information, while the MOM handles

issues regarding security, performance, scalability, reliability
and robustness of sending and receiving messages.

The paper shows the application of the messaging solution
in context of an agent-based flexibility trading application.

II. RELATED WORK
In context of messaging systems for Smart Grid

application especially solutions based on XMPP are often
used [2]. Although, XMPP is a flexible solution also
following a MOM approach, it has weaknesses with respect
to ease of deployment and configuration as well as
implementation especially with respect to required aspects
such as reliability. One example here is OpenADR[3].
Recently, with FIWARE, an open source platform is available
which provides a large set of application programming
interfaces (APIs) for a large variety of applications also
providing a messaging solution for Smart Grids. However,
the platform is extremely complex to setup and operated, thus
lacking of ease-of-use.

In a more general sense, several MOM solutions are
available. Those, however, have not been used widely in the
field of Smart Grid applications. Particular types of MOMs
use a (distributed) message broker as central hub for
information interchange. Every sent message passes the
messaging broker, which executes specific operations such as
persisting, queuing or translating on each message. Especially
with respect to reliability and robustness broker-based
messaging has certain benefits such as life-time decoupling,
state recovery, or guaranteed delivery [4].

Research and industry have developed several broker-
based MOM systems providing similar services in general
but have differences in their operational details and their
specific focus. The solution ranges from research driven
developments for certain use cases such as DoubleDecker [5]
used for transmitting computer network status and
monitoring data within a software-defined networking
infrastructure, via solutions focusing mainly on high
throughput such as ActiveMQ1, RabbitMQ2, and Apache
Kafka [6] or lightweight and easy-to-use solutions such as
NSQ3 or NATS4 towards totally cloud based solutions like
Amazon SNS+SQS or the Microsoft Azure Platform. Despite
of the fact that the usage of MOM has been encouraged also

1 http://activemq.apache.org/
2 http://www.rabbitmq.com/
3 http://nsq.io/
4 https://nats.io/

285

ACIT 2018, June 1-3, 2018, Ceske Budejovice, Czech Republic

by others, apparently most Smart Grid solutions do not
follow this approach.

III. AGENT-BASED FLEXIBILITY TRADING
The context in which the proposed messaging solution is
show cased is a flexibility coordination scenario. Here, power
equalization is achieved by orchestrating flexibilities of
individual assets - particularly batteries, photovoltaics, and
industrial loads. This means that assets adapt their production
or consumption either by pre- or postponing or variation of
amount. The flexibility coordination is implemented in a
market-based approach, where flexibility offers are submitted
towards are central market platform, where an optimal
assignment of flexibilities is evaluated and corresponding
control signals are sent towards flexibility suppliers.

The flexibility trading architecture is designed as
hierarchical multi-agent system. Certain types of agents are
situated at one of four logical layers fulfilling a specific task
at this layer.

Fig. 1. Overview of the scalability-focused flexibility trading

hierarchy including MOM instances.

Figure 1 shows the layered agent-architecture. At the
bottom layer (Flexibility Asset Layer) reside device agents
providing a common control interface of power grid
hardware (e. g. a photovoltaic system or a battery) to the
flexibility coordination system. Additionally, device agents
implement a device-specific interface in order to read status
information (such as state of charge of a battery) directly
from the device or send control commands (e. g. charge or
discharge) towards the device.

Within the hierarchy, each device agent may be directly
connected to exactly one agent at the cluster layer or
aggregation layer. Both are serving the purpose of condensing
and aggregating flexibility potentials of assets. The difference
between both layers is that the cluster agents groups assets
belonging logically together (e. g. situated in one facility)
while aggregator agents groups whole clusters or individual
assets due to contractual (business) relation. Aggregator
agents trade flexibilities at the market on behalf of asset
owners.

At the market platform the aggregator bids are processed
and flexibility potential is exchanged with respect to an
optimal grid operation. A certain set of flexibilities is selected

at the market platform from the transmitted bids with respect
to the current grid state.

From perspective of the information flow, in direction from
device agents up to the market (upstream) flexibility
information in form of device states or flexibility bids is
transmitted. In the opposite direction (downstream), control
signals for flexibility scheduling and activation are
transmitted.

The deployment of MOM instances within the system
architecture is done as shown in Figure 1. Instances are
deployed at each border between two vertically neighbored
layers for each combined group. Thus, the Kafka instances
are provided and individually configured by either a cluster
owner (e. g. a facility operator), an aggregator participating in
flexibility trading and the market platform operator. This
approach takes account of security, robustness, scalability and
also control of system. The MOM providers at each level
have better knowledge about connected agents, for instance
by exactly knowing device types (e. g. for cluster owners) or
contractual relations (at market or aggregator level).
Additionally, the number of connected agents at each Kafka
deployment is limited to a small amount compared to a
centralized solution. Both aspects are especially important for
large scale (e. g. pan-European) deployments where
thousands of agents participate in flexibility trading.

IV. KAFKA-BASED MESSAGE BROKERING
Due to the general similarity of available MOMs, the

envisioned flexibility trading messaging solution would be
potentially realizable with any of the MOMs named in the
related work section. Thus, the selection of one the solution
suitable for most messaging scenarios appearing in Smart
Grid field is considerably difficult. In this project it was
decided to implement our messaging solution on basis of
Apache Kafka mainly due to some technical aspects, which
seems making Kafka more suitable to the needs for Smart
Grid messaging, compared to ActiveMQ and RabbitMQ
solutions. The second reason for choosing Kafka is its proven
usage in many large-scale productive environments.

Apache Kafka is designed as a distributed streaming
platform following the principle of a broker-based message
oriented middleware. Kafka's goal is to provide a means for
high performance processing of continual sequence of input
data (data packets) and its main design goals are reliable data
transfer, fast processing, scalability, and fault tolerance [6].
These are important features for a Smart Grid messaging
solution with respect to potentially many participating
systems and overall criticality of such systems.

From a coarse-grained view, a Kafka-based distributed
system consists of three principal components: The first
component, the message producer, is creating streams of data
that are read and/or processed by one or more message
consumers (second component). The third main component is
the Kafka messaging broker, which is mainly responsible for
storing all messages until they are received by the message
consumer. A Kafka message consists basically of a key/value
pair for information encoding, a time stamp, and addressing
information given by the core concept of message topics. A
topic basically provides a name for a category of messages
with a certain type. Using that name a message producer can

286

ACIT 2018, June 1-3, 2018, Ceske Budejovice, Czech Republic

publish a message of that type. On the other end, consumers
can subscribe to messages of that type also using the topic
name. Each topic may have multiple consumers. The
communication protocol used between Kafka clients and
brokers is significantly more efficient than AMQP used by
RabbitMQ and ActiveMQ. This gets in particular obvious
when looking at a performance evaluation comparing latency
and CPU load when batches of messages are processed5.

Several aspects specific to the design of Kafka are
important to achieve the requirements specifically stated for
the flexibility-trading application and many other Smart Grid
applications. With respect to scalability of the system Kafka
implements an efficiency-focused way of message handling
by introducing the concept of partitions, being a particular
difference to the queue implementations of RabbitMQ and
ActiveMQ.

In order to provide high performance when messages are
published or consumed, Kafka uses so-called partitions.
Partitions can be seen as message sub-queues within a single
topic, where published messages get stored in an immutable
first-in-first-out order. Each partition is usually managed by
one instance of a Kafka cluster potentially running at a
dedicated host. In that way, write and read performance of a
topic is substantially increased through allowing parallel
writes and reads by multiple consumers and / or producers
(compared to RabbitMQ, and ActiveMQ essentially only
supporting concurrent reads). Published messages get sorted
into exactly one certain partition of the topic - either directly
specified by the producer or in a round-robin manner
controlled by Kafka. For message consumption, basically, a
consumer polls a topic and retrieves the messages of any of
the partitions. Furthermore, in order to provide a means of
load balancing and parallel processing at receiver side,
consumers may be organized in consumer groups (in similar
way supported by RabbitMQ and ActiveMQ), which lead to
direct mapping between consumers within that group and
certain partitions: Each consumer of the group retrieves the
messages of one specific partition. Parallel reads and writes
minimize the additional latency induced by message
brokering in general. Using that approaches Kafka was able
to achieve a throughput of 500 K Messages/sec [6].

With respect to fault-tolerance of the Kafka messaging
system, each partition might have replications on other Kafka
instances providing a means of redundancy. One of the
replicas is considered as leader, where messages are stored
first and afterwards replicated to other instances. Only after
the message has been hard-drive-persisted at each replication,
subscribed consumers can pull the message. This message
persistence also provides a means for fault-tolerance in case
of system failure of an Kafka instance. Together with a
configurable retention time, specifying how long messages
are stored in the Kafka system, this also provides a means of
system recovery for message consumers, which then have the
possibility to restore their internal state after a system failure
by polling old messages from the respective topics. Similar
functions are also supported by RabbitMQ and ActiveMQ,
however, the particular page cache hard-drive persistence of

5https://dzone.com/articles/message-brokers-in-indirect-

communication-paradigm

Kafka outperforms other approaches resulting in lower
latency and higher throughput [7].

In terms of security, Kafka provides TLS-secured
connections between consumers/producers and the broker
systems, and additionally access control lists (ACLs)
specifying access rights (read, write) a consumer or producer
has for each topic.

V. CONFIGURATION AND USAGE OF THE MOM
SOLUTION

Extending the proposed Kafka deployment, an easy-to-use
messaging middleware client API for inter-agent data
transfers was developed, aimed to be used by software
component implementers. Currently, the API is available for
Java and Python. Additionally, an efficient message
serialization system based on Apache Avro [8] is included.

Fig. 2. Topic configuration for the flexibility trading use case.

The main design goals of the messaging client API were
the provisioning of a high-level abstraction of Kafka
messaging details such as creating and maintaining Kafka
connections, topic and partition management, TLS key
management as well as message encoding and serialization.
This allows agent implementers to focus on developing agent
logic despite of concentrating on messaging details. While
the API and configuration is suitable for any arbitrary
topology, we showcase the setup for the layered agent
hierarchy as used for the flex trading use case. The
corresponding topic configuration is shown in Figure 2.

Essentially, each agent uses one topic for incoming
messages from lower layers (flexibility information), while
top-down messages (control information) is delivered using
private topics only readable by the addressed agents. This is
chosen because of data security reasons but also in order to
minimize the number of actively maintained connections for
each agent (maximum of three in this case).

Before an agent is able to send or receive messages it must
be registered at the Kafka broker including exchange of
necessary security credentials. Within the agent hierarchy,
each agent has connections to one or two Kafka brokers - one

287

ACIT 2018, June 1-3, 2018, Ceske Budejovice, Czech Republic

broker for upstream data transfers and/or one for
downstream. The messaging API provides the functionality to
correctly connect an agent to the Kafka messaging broker.
For this, however, a minimal set of information needs to be
provided in advance for each connection an agent has to
another agent in form of a simple configuration file which is
given in Listing 1.

connection.name=aggreCon
agent.id=cluster-1
broker.address=192.168.100.135:9093
topic.in=cluster-1-in
security=TLS

Listing 1: Configuration file specifying settings for an agent
connecting another agent.

Besides an unique agent identifier (agent.id) and a
connection name (connection.name), the addressing
information of the Kafka instance (broker.address), and
the security configuration needs to be specified (security).

The API provides simple methods for sending
(send(Message)) and or receiving messages (receive())
from other agents. The API user must not be aware of correct
topic names and/or partitions or acknowledging received
messages. The usage of the API is shown for cluster agent
cluster-1 in Listing 2 for the Java version:

//…
//instantiation of a connection object
Connection aggreCon = new Con(“aggreCon”);
//…
//create a MessageObject
Message request = new Message(“Hello”);
//reliably send message to the aggregator
aggregatorCon.send(msgObj);
//receive all messages from the aggregator
Message[] answers = aggreCon.receive();

Listing2: Instantiation and usage of a Connection object.

First, a Connection object is instantiated describing a
connection to a particular broker instance as specified in the
configuration file (which is automatically read when
instantiated). Second, a message object is created. Third, the
message is sent using the send() method provided by the
API by specifying the addressee of the message. After that
the user can be sure, that the message will be reliably
delivered to the receiver. Calling the receive() functions
fetches all messages stored in the corresponding topic
(topic.in). Resolution of actual topic names as well as
making sure that messages are sent and delivered is hidden
by the API.

While configuration and usage of the messaging API
seems to be simple, some remarks has to be made:

If (as in this case) private topics are used, the potential
problem occurs that an upper-layer agent must know the
names of any lower-layer agent prior to send messages. In
case of our flexibility-trading application, however, this
shortcoming is alleviated as an upper-layer agent is never
required to initially contact a lower-layer agent. This situation
is now exploited by inserting the ID of the sender agent into
each application-level message. This allows an upper-layer

agent to derive the correct private topic name.
With respect to scalability and efficiency of data transfers,

Apache Avro6 [8] has been used for serializing and de-
serializing application level messages into highly compact
binary representations. The basic concept of Avro is using
schema files defining how application data is to be serialized
into binary data, and how binary data is to be interpreted by a
reader. In order to achieve efficient data transfers, the schema
files are not part of the actual binary data.

VII. CONCLUSION AND FUTURE WORK
This work goes into details when MOM is applied in

context of a flexibility-trading application as an example for
applications in field of Smart Grids. These applications
usually require scalable, fault-tolerant, and secure and
reliable data transfers. We propose to use an Apache Kafka
based messaging oriented middleware, embedded into a
hierarchical system architecture consisting of various types of
agents. It is shown, that several aspects of Kafka provide a
beneficial basis in order to build a viable messaging solution.
Additionally, we also provided details on a messaging API
hiding much of the complexity of the messaging system and
supporting implementers of agents.

As next step, this mainly conceptual work will be extended
by applying and validating the messaging solution in a pan-
European testbed. Here, the main focus will be laid on fault-
tolerance and performance evaluations with respect to
latency, throughput and also fault-tolerance. In this context
we plan to investigate impacts of different Kafka deployment
scenarios in comparison to the currently chosen multilayer
deployment.

REFERENCES
[1] M. Albano, L. L. Ferreira, L. Miguel Pinho, and A. R.

Alkhawaja. “Message-oriented middleware for smart
grids,” Computer Standards & Interfaces, vol. 38, Feb.
2015), 133–143.

[2] P. Saint-Andre, “RFC6120 - Extensible Messaging and
Presence Protocoll (XMPP): Core.” Internet Engineering
Task Force (IETF), Mar-2011.

[3] M. A. Piette, G. Ghatikar, S. Kiliccote, E. Koch, D.
Hennage, P. Palensky, and C. McParland, “Open
automated demand response communications
specification (version 1.0),” 2009.

[4] F. von Tüllenburg, G. Panholzer, J. L. Du et al. (2017):
“An Agent-based Flexibility Trading Architecture with
Scalable and Robust Messaging,” Proceedings of the
2017 IEEE International Conference on Smart Grid
Communications (SmartGridComm), Oct. 2017.

[5] Wolfgang John, Catalin Meirosu, Bertrand Pechenot,
Pontus Skoldstrom, Per Kreuger, and Rebecca Steinert.
“Scalable Software Defined Monitoring for Service
Provider DevOps,” IEEE, Oct. 2015, pp. 61–66.

[6] Jay Kreps, Neha Narkhede, Jun Rao, and others, “Kafka:
A distributed messaging system for log processing,”
Proceedings of the NetDB, 2015 pp. 1–7.

[7] Vineet John, Xia Liu. “A Survey of Distributed Message
Broker Queues,” arXiv preprint arXiv:1704.0411, 2017

6 https://avro.apache.org/

288

ACIT 2018, June 1-3, 2018, Ceske Budejovice, Czech Republic

	Zbirnyk_FULL
	proc_SPONS
	proceedings
	sec9_full
	s9
	s9
	Ferdinand von Tüllenburg, Jia Lei Du_41

