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 Abstract: Smart Grids are characterized by tight 
coupling and intertwining between the electrical system 
and information and communication technology. Due to 
this, application layer messaging systems are regularly 
required for many Smart Grid applications. Especially in 
research messaging solutions are setup from scratch. In 
this paper we propose a generic and easy to setup message 
oriented middleware (MOM) solution providing robust 
and scalable messaging. 
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I. INTRODUCTION 
Future electrical power systems will be characterized by a 

new control paradigm: Decentralized controllable power 
sources such as batteries, wind generators, and PV systems 
on production side and controllable loads on consumption 
side will be constantly monitored and operated depending on 
the current grid state in order to increase overall efficiency 
and ensure power quality. Part of this development is the 
augmentation of the electrical system is with information and 
communication technology (ICT). 

For the sake of data transfers between entities of the ICT 
subsystem usually a messaging solution is required providing 
an infrastructure to distribute messages correctly between 
instances also including definitions of message formats. 

Especially for research projects in the field of Smart Grids, 
it is apparent that solutions for data transmission systems are 
redeveloped every time – a time consuming task when 
considering that the data transfer system is usually of minor 
priority. Due to this, an easy-to-deploy and (re-) usable 
messaging solution can be seen as a valuable contribution to 
Smart Grid research. 

In this paper we introduce our messaging solution 
following the concept of a message-oriented middleware 
(MOM). As these features are regularly required in Smart 
Grid scenarios, the proposed solution provides robust, 
reliable, scalable and secure data transfers. All these without 
losing focus on ease of use and deployment, as well as 
applicability in various Smart Grid scenarios. In addition to 
this, we propose an application programming interface (API), 
which can be easily used and integrated in the 
communicating software components. 

MOM solutions in general provide advantages for smart 
grid communication with respect to required communication 
capabilities (e. g. group communication) high scalability and 
high performance [1]. Additionally, one important beneficial 
aspect of using MOMs is that agents can focus on their key 
tasks of processing information, while the MOM handles 

issues regarding security, performance, scalability, reliability 
and robustness of sending and receiving messages.  

The paper shows the application of the messaging solution 
in context of an agent-based flexibility trading application. 

II. RELATED WORK 
In context of messaging systems for Smart Grid 

application especially solutions based on XMPP are often 
used [2]. Although, XMPP is a flexible solution also 
following a MOM approach, it has weaknesses with respect 
to ease of deployment and configuration as well as 
implementation especially with respect to required aspects 
such as reliability. One example here is OpenADR[3]. 
Recently, with FIWARE, an open source platform is available 
which provides a large set of application programming 
interfaces (APIs) for a large variety of applications also 
providing a messaging solution for Smart Grids. However, 
the platform is extremely complex to setup and operated, thus 
lacking of ease-of-use. 

In a more general sense, several MOM solutions are 
available. Those, however, have not been used widely in the 
field of Smart Grid applications. Particular types of MOMs 
use a (distributed) message broker as central hub for 
information interchange. Every sent message passes the 
messaging broker, which executes specific operations such as 
persisting, queuing or translating on each message. Especially 
with respect to reliability and robustness broker-based 
messaging has certain benefits such as life-time decoupling, 
state recovery, or guaranteed delivery [4]. 

Research and industry have developed several broker-
based MOM systems providing similar services in general 
but have differences in their operational details and their 
specific focus. The solution ranges from research driven 
developments for certain use cases such as DoubleDecker [5] 
used for transmitting computer network status and 
monitoring data within a software-defined networking 
infrastructure, via solutions focusing mainly on high 
throughput such as ActiveMQ1, RabbitMQ2, and Apache 
Kafka [6] or lightweight and easy-to-use solutions such as 
NSQ3 or NATS4 towards totally cloud based solutions like 
Amazon SNS+SQS or the Microsoft Azure Platform. Despite 
of the fact that the usage of MOM has been encouraged also 

                                                           
1 http://activemq.apache.org/ 
2 http://www.rabbitmq.com/ 
3 http://nsq.io/ 
4 https://nats.io/ 

285

ACIT 2018, June 1-3, 2018, Ceske Budejovice, Czech Republic



by others, apparently most Smart Grid solutions do not 
follow this approach. 

III. AGENT-BASED FLEXIBILITY TRADING  
The context in which the proposed messaging solution is 
show cased is a flexibility coordination scenario. Here, power 
equalization is achieved by orchestrating flexibilities of 
individual assets - particularly batteries, photovoltaics, and 
industrial loads. This means that assets adapt their production 
or consumption either by pre- or postponing or variation of 
amount. The flexibility coordination is implemented in a 
market-based approach, where flexibility offers are submitted 
towards are central market platform, where an optimal 
assignment of flexibilities is evaluated and corresponding 
control signals are sent towards flexibility suppliers. 

The flexibility trading architecture is designed as 
hierarchical multi-agent system. Certain types of agents are 
situated at one of four logical layers fulfilling a specific task 
at this layer. 

 
Fig. 1. Overview of the scalability-focused  flexibility trading 

hierarchy including MOM instances. 

Figure 1 shows the layered agent-architecture. At the 
bottom layer (Flexibility Asset Layer) reside device agents 
providing a common control interface of power grid 
hardware (e. g. a photovoltaic system or a battery) to the 
flexibility coordination system. Additionally, device agents 
implement a device-specific interface in order to read status 
information (such as state of charge of a battery) directly 
from the device or send control commands (e. g. charge or 
discharge) towards the device. 

Within the hierarchy, each device agent may be directly 
connected to exactly one agent at the cluster layer or 
aggregation layer. Both are serving the purpose of condensing 
and aggregating flexibility potentials of assets. The difference 
between both layers is that the cluster agents groups assets 
belonging logically together (e. g. situated in one facility) 
while aggregator agents groups whole clusters or individual 
assets due to contractual (business) relation. Aggregator 
agents trade flexibilities at the market on behalf of asset 
owners. 

At the market platform the aggregator bids are processed 
and flexibility potential is exchanged with respect to an 
optimal grid operation. A certain set of flexibilities is selected 

at the market platform from the transmitted bids with respect 
to the current grid state. 

From perspective of the information flow, in direction from 
device agents up to the market (upstream) flexibility 
information in form of device states or flexibility bids is 
transmitted. In the opposite direction (downstream), control 
signals for flexibility scheduling and activation are 
transmitted. 

The deployment of MOM instances within the system 
architecture is done as shown in Figure 1. Instances are 
deployed at each border between two vertically neighbored 
layers for each combined group. Thus, the Kafka instances 
are provided and individually configured by either a cluster 
owner (e. g. a facility operator), an aggregator participating in 
flexibility trading and the market platform operator. This 
approach takes account of security, robustness, scalability and 
also control of system. The MOM providers at each level 
have better knowledge about connected agents, for instance 
by exactly knowing device types (e. g. for cluster owners) or 
contractual relations (at market or aggregator level). 
Additionally, the number of connected agents at each Kafka 
deployment is limited to a small amount compared to a 
centralized solution. Both aspects are especially important for 
large scale (e. g. pan-European) deployments where 
thousands of agents participate in flexibility trading. 

IV. KAFKA-BASED MESSAGE BROKERING 
Due to the general similarity of available MOMs, the 

envisioned flexibility trading messaging solution would be 
potentially realizable with any of the MOMs named in the 
related work section. Thus, the selection of one the solution 
suitable for most messaging scenarios appearing in Smart 
Grid field is considerably difficult. In this project it was 
decided to implement our messaging solution on basis of 
Apache Kafka mainly due to some technical aspects, which 
seems making Kafka more suitable to the needs for Smart 
Grid messaging, compared to ActiveMQ and RabbitMQ 
solutions. The second reason for choosing Kafka is its proven 
usage in many large-scale productive environments. 

Apache Kafka is designed as a distributed streaming 
platform following the principle of a broker-based message 
oriented middleware. Kafka's goal is to provide a means for 
high performance processing of continual sequence of input 
data (data packets) and its main design goals are reliable data 
transfer, fast processing, scalability, and fault tolerance [6]. 
These are important features for a Smart Grid messaging 
solution with respect to potentially many participating 
systems and overall criticality of such systems. 

From a coarse-grained view, a Kafka-based distributed 
system consists of three principal components: The first 
component, the message producer, is creating streams of data 
that are read and/or processed by one or more message 
consumers (second component). The third main component is 
the Kafka messaging broker, which is mainly responsible for 
storing all messages until they are received by the message 
consumer. A Kafka message consists basically of a key/value 
pair for information encoding, a time stamp, and addressing 
information given by the core concept of message topics. A 
topic basically provides a name for a category of messages 
with a certain type. Using that name a message producer can 
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publish a message of that type. On the other end, consumers 
can subscribe to messages of that type also using the topic 
name. Each topic may have multiple consumers. The 
communication protocol used between Kafka clients and 
brokers is significantly more efficient than AMQP used by 
RabbitMQ and ActiveMQ. This gets in particular obvious 
when looking at a performance evaluation comparing latency 
and CPU load when batches of messages are processed5. 

Several aspects specific to the design of Kafka are 
important to achieve the requirements specifically stated for 
the flexibility-trading application and many other Smart Grid 
applications. With respect to scalability of the system Kafka 
implements an efficiency-focused way of message handling 
by introducing the concept of partitions, being a particular 
difference to the queue implementations of RabbitMQ and 
ActiveMQ. 

In order to provide high performance when messages are 
published or consumed, Kafka uses so-called partitions. 
Partitions can be seen as message sub-queues within a single 
topic, where published messages get stored in an immutable 
first-in-first-out order. Each partition is usually managed by 
one instance of a Kafka cluster potentially running at a 
dedicated host. In that way, write and read performance of a 
topic is substantially increased through allowing parallel 
writes and reads by multiple consumers and / or producers 
(compared to RabbitMQ, and ActiveMQ essentially only 
supporting concurrent reads). Published messages get sorted 
into exactly one certain partition of the topic - either directly 
specified by the producer or in a round-robin manner 
controlled by Kafka. For message consumption, basically, a 
consumer polls a topic and retrieves the messages of any of 
the partitions. Furthermore, in order to provide a means of 
load balancing and parallel processing at receiver side, 
consumers may be organized in consumer groups (in similar 
way supported by RabbitMQ and ActiveMQ), which lead to 
direct mapping between consumers within that group and 
certain partitions: Each consumer of the group retrieves the 
messages of one specific partition. Parallel reads and writes 
minimize the additional latency induced by message 
brokering in general. Using that approaches Kafka was able 
to achieve a throughput of 500 K Messages/sec [6].  

With respect to fault-tolerance of the Kafka messaging 
system, each partition might have replications on other Kafka 
instances providing a means of redundancy. One of the 
replicas is considered as leader, where messages are stored 
first and afterwards replicated to other instances. Only after 
the message has been hard-drive-persisted at each replication, 
subscribed consumers can pull the message. This message 
persistence also provides a means for fault-tolerance in case 
of system failure of an Kafka instance. Together with a 
configurable retention time, specifying how long messages 
are stored in the Kafka system, this also provides a means of 
system recovery for message consumers, which then have the 
possibility to restore their internal state after a system failure 
by polling old messages from the respective topics. Similar 
functions are also supported by RabbitMQ and ActiveMQ, 
however, the particular page cache hard-drive persistence of 

                                                           
5https://dzone.com/articles/message-brokers-in-indirect-

communication-paradigm 

Kafka outperforms other approaches resulting in lower 
latency and higher throughput [7]. 

In terms of security, Kafka provides TLS-secured 
connections between consumers/producers and the broker 
systems, and additionally access control lists (ACLs) 
specifying access rights (read, write) a consumer or producer 
has for each topic. 

V. CONFIGURATION AND USAGE OF THE MOM 
SOLUTION 

Extending the proposed Kafka deployment, an easy-to-use 
messaging middleware client API for inter-agent data 
transfers was developed, aimed to be used by software 
component implementers. Currently, the API is available for 
Java and Python. Additionally, an efficient message 
serialization system based on Apache Avro [8] is included. 

 

 
Fig. 2. Topic configuration for the flexibility trading use case. 

The main design goals of the messaging client API were 
the provisioning of a high-level abstraction of Kafka 
messaging details such as creating and maintaining Kafka 
connections, topic and partition management, TLS key 
management as well as message encoding and serialization. 
This allows agent implementers to focus on developing agent 
logic despite of concentrating on messaging details. While 
the API and configuration is suitable for any arbitrary 
topology, we showcase the setup for the layered agent 
hierarchy as used for the flex trading use case. The 
corresponding topic configuration is shown in Figure 2. 

Essentially, each agent uses one topic for incoming 
messages from lower layers (flexibility information), while 
top-down messages (control information) is delivered using 
private topics only readable by the addressed agents. This is 
chosen because of data security reasons but also in order to 
minimize the number of actively maintained connections for 
each agent (maximum of three in this case). 

Before an agent is able to send or receive messages it must 
be registered at the Kafka broker including exchange of 
necessary security credentials. Within the agent hierarchy, 
each agent has connections to one or two Kafka brokers - one 
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broker for upstream data transfers and/or one for 
downstream. The messaging API provides the functionality to 
correctly connect an agent to the Kafka messaging broker. 
For this, however, a minimal set of information needs to be 
provided in advance for each connection an agent has to 
another agent in form of a simple configuration file which is 
given in Listing 1. 
 
connection.name=aggreCon 
agent.id=cluster-1 
broker.address=192.168.100.135:9093 
topic.in=cluster-1-in 
security=TLS 

Listing 1: Configuration file specifying settings for an agent 
connecting another agent. 

Besides an unique agent identifier (agent.id) and a 
connection name (connection.name), the addressing 
information of the Kafka instance (broker.address), and 
the security configuration needs to be specified (security). 

The API provides simple methods for sending 
(send(Message)) and or receiving messages (receive()) 
from other agents. The API user must not be aware of correct 
topic names and/or partitions or acknowledging received 
messages. The usage of the API is shown for cluster agent 
cluster-1 in Listing 2 for the Java version: 

 
//… 
//instantiation of a connection object 
Connection aggreCon = new Con(“aggreCon”); 
//… 
//create a MessageObject 
Message request = new Message(“Hello”); 
//reliably send message to the aggregator 
aggregatorCon.send(msgObj); 
//receive all messages from the aggregator 
Message[] answers = aggreCon.receive(); 

Listing2: Instantiation and usage of a Connection object. 

First, a Connection object is instantiated describing a 
connection to a particular broker instance as specified in the 
configuration file (which is automatically read when 
instantiated). Second, a message object is created. Third, the 
message is sent using the send() method provided by the 
API by specifying the addressee of the message. After that 
the user can be sure, that the message will be reliably 
delivered to the receiver. Calling the receive() functions 
fetches all messages stored in the corresponding topic 
(topic.in). Resolution of actual topic names as well as 
making sure that messages are sent and delivered is hidden 
by the API. 

While configuration and usage of the messaging API 
seems to be simple, some remarks has to be made: 

If (as in this case) private topics are used, the potential 
problem occurs that an upper-layer agent must know the 
names of any lower-layer agent prior to send messages. In 
case of our flexibility-trading application, however, this 
shortcoming is alleviated as an upper-layer agent is never 
required to initially contact a lower-layer agent. This situation 
is now exploited by inserting the ID of the sender agent into 
each application-level message. This allows an upper-layer 

agent to derive the correct private topic name. 
With respect to scalability and efficiency of data transfers, 

Apache Avro6 [8] has been used for serializing and de-
serializing application level messages into highly compact 
binary representations. The basic concept of Avro is using 
schema files defining how application data is to be serialized 
into binary data, and how binary data is to be interpreted by a 
reader. In order to achieve efficient data transfers, the schema 
files are not part of the actual binary data. 

VII. CONCLUSION AND FUTURE WORK 
This work goes into details when MOM is applied in 

context of a flexibility-trading application as an example for 
applications in field of Smart Grids. These applications 
usually require scalable, fault-tolerant, and secure and 
reliable data transfers. We propose to use an Apache Kafka 
based messaging oriented middleware, embedded into a 
hierarchical system architecture consisting of various types of 
agents. It is shown, that several aspects of Kafka provide a 
beneficial basis in order to build a viable messaging solution. 
Additionally, we also provided details on a messaging API 
hiding much of the complexity of the messaging system and 
supporting implementers of agents. 

As next step, this mainly conceptual work will be extended 
by applying and validating the messaging solution in a pan-
European testbed. Here, the main focus will be laid on fault-
tolerance and performance evaluations with respect to 
latency, throughput and also fault-tolerance. In this context 
we plan to investigate impacts of different Kafka deployment 
scenarios in comparison to the currently chosen multilayer 
deployment. 
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