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lassical solution to the Poisson’s equation
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der the Poisson’s equation [1, c. 276]

u(z,y) | Pulz,y) _
a:r? ar ayz = _f(rw y)v (1)
function:
z+i(y—n)
/ / YA (2)
—i(y—n)

the partial derivatives of the first and second orders of the function u, (z,7). On
of formula (2) we find

T : .

=t [ G ita=nn) = fa =ity =) m)dn. ©
e 25

duce the notation: a(z,y,4,m) =z +i(y —n); B(z,y,4,n) =z —i(y —n). For

€0 we have

Pu i /” (6f(a($,y,i,n),n) = Bf(ﬁ(x,y,i,n),n)) =
0

or2 2 da ap

61L1 7

= / ! (if (z + iy — m),m) + if (& — iy — m), m)) dn;

Qi 2uls
4} Uy A .9 o g 2 z
5:[;2_ = 5 (7' df((l/(l', Y1 n)a 77) =t af(ﬂ(rv Y, 7]), TI)) dT] = f(Tv y)
0
Pu(z,y)  u(z,y)
81?2 T ayz B _f(Ia y)
signifies that the function uy(z, y) defined by the formula (3) is a partial solution
uation (1).
ilarly we prove, the function
z—i(y—n) ;
/ an [ emie, i= VT @
+i(y—n)
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for f(z,y) € C°, is a partial solution to the equation (1).
Theorem. If the function f (z,y) € C*, then the function

i [Y z+i(y—n) i [T z—i(y—n)
wen =g [T [ " femac L [Ty L reme
0 z—i(y—n) y z+i(y—n)

is the classical (u € C22) solution to the equation (1).

References

[1] A. N. Tikhonov, A. A. Samarskiy, Equations of mathematical physics, M
Nauka, 1977, 735 p.

Operator research of classical solutions to
boundary-value problems for hyperbolic second or«
equations

Hryhorii P. Khoma, Svitlana H. Khoma-Mohylska
Ternopil National Economic University, Ternopil, Ukraine
e-mail: sv.khoma75@gmail.com

Statement of the problem: to find a classical solution to the hyperbolic second

equation
Ut — Uz = g(7,8), 0<z<m ¢teR,

which satisfies the boundary conditions
u(0,t) =u(mt) =0, teR.

We have proved that the classical solution to the problem (1), (2) is the function [

u(@,1) = (Rg) (@,1) = (9) (2. 1) + (0) (=),

where
1 T t+z—¢ 1 ™ t—z+€
S == [a [ senir-}[a [ e
0 t—z4-£ T t+z—§
T 4§ T t+m—¢
(gg) (Z5t)i= W4ﬂx/d§/g(§,7)dr— i/d{ / 9(&,7)dr;
0 t—¢ 0 t—m+€

g(z,t) € CO,  CO1_ s the space of functions of two variables, continuous and boug
together with the derivative of ¢, defined on the set [0, 7] x R.
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