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NONLINEAR MODEL OF THE THREE-COMPONENTS COMPETITIVE
ADSORPTION USING LANGMUIR EQUILIBRIUM

The"Basis for the mathematical modeling of non-isothermal gas competitive adsorption in
a porous solid using Langmuir equilibrium is given. High-performance analytical solutions of
considered adsorption models based on the lleaviside operating method and Laudau’s decom-
position aud linearization approach of Langmuir equilibrini by expanding into a convergeut
series in the ten‘{é}murc phase transition point are propased.

The numerical experitnents result based on high-speed computations on multicore comput-
ers are presented.
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INTRODUCTION

The experimental and theoretical study of the competitive adsorption and diffusion of
several gases through a nanoporous solid and the instantaneous {(out of equilibrium) distribu-
tion of the adsorbed phases is particularly important in many fields, such as gas separation,
heterogeneous catalysis, purification of confined atmospheres, reduction of exhaust emis-
sions contributing to global warming, ctc. [1}. Taking into account the influence of physical
factors that limit the-adsorption kinctics on the surface of nanopores, the quality of the math-
ematical models for the adsorption of exhaust gases (Lhiydrocarbon components, CO,) in a
microporous bed determines the effectiveness of technological solutions tor the neutralization
of gas emissions [2-8].

However, most of these models do not fully reflect the complex spatial-temporal repre-
sentations of the cowrse of all components of complex mass transfer in the intercrystallite
space and in the intracrystallite space, including the internal kinetics of the phasc transition
takingdnio account the geometric chasacteristics of transfer arcas [6.7].

In f;’fo:posed paper, which is the aevelopment of papers [§-11|, substantiated and devel-
oped highly productive methods for mathematical modeling of three-component adsorption
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NONLINEAR MODEL OF COMPETITIVE ADSORPTION 11

in the microporous solid based on a system of spatiotemporal equations of heat and mass
transfer in partial derivatives and generalized Langmuir equation. For modeling, we usc
the high-performance methods of the Heaviside operational calculus and the decomposition
approach for expansion the adsorption equilibrium.

1 COMPETITIVE N-COMPONENT ADSORPTION MODEL IN GENERAL FORMULATION

The presented model is analogous to the biporous model [2,3,5,6). Developing the
approach described by Rhutwen and Karger |7, 8| and Petryk et al. {9 concerning the con-
struction of a complex process of competitive adsorption and diffusion, one should dwell on
the most important defining hypotheses limiting the process.

The general hypothesis adopted in developing the presented model in the most general
formulation concludes that the competitive n-component adsorption interaction betiween
adsorption molecules of several gases (two or more) and active adsorption centers on the
phase separation surfaces in the nanoporous crystallites is determined on the basis of the
nonlinear competitive equilibrium function of the Langmuir type, taking into account the
physical assumptions [7]:

1. Competitive adsorption is caused by the dispersion forces whose interaction is estab-
lished by Lennard-Jones and the electrostatic forces of gravitv and repulsion, the mechanism
of which is described by Van der Waals [8]. The competitive diffusion process involves two
types of mass transfer: diffusion in the macropores (intercrystallite space) and diffusion in
the micropores of crystallites (intracrystallite space).

2. During the evolution of the system towards equilibrium there is a concentration
gradient in the macropores and in the micropores.

3. Competitive adsorption and diffusion occuis in active adsorbent centers, distributed
throughout the inner surface of the nanoporous [7,8|. All crvstallites are spherical and have
the same radius R, the crystallite bed is uniforilv packed.

Taking into account the above, we have developed a nonlinear competitive adsorption
model in the form of these hypotheses:

l'){. (t,Z} ~ D-inter) 320) _mm .DintrqJ /% \ (1]
at 2 8z2 ™M R \AX /.,
0Q;(t, X,2) _ Dintre, (0°Q, 2 8G;) 2)
ot TR O\aX? ' XaX >
with initial conditions:

Ci(t.2)pao =0. Q (1. X.2))0p =0, X €(0.1), 5= e (3}

and boundary conditions for coordinate X of the crystallite (particle):
0 . -
:r,—\_'QJ (t. X, Z)x=0 =0 (4)

In the expressions (1),(2) the function

Qi (t.X =1,2) 301 = K,C, (8, 2) (1 + K\Cy (8, 2) ~ [,Ca (8. Z) + KoCs (8. 2))" (5)
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iz the Langmuir competitive adsorption equilibria with boundary conditions on coordinate
Z: i
C‘ rt L)z = = C¥", OOLC“# Z) 1420 = V. (6)
Here ¢,.q;. 7 = 1, 1.3-is the current concentrations of the diffusion adso=b=nt compcenents
in the gas phase and micropores of the adsorbent particles. c..;, gs, - 18 the corresponding
equilibrium conceptzgtions of the adsorbent components in the gas and adsorbed phase,
K; qwﬂ Coo, I8 “the g==irption constant of the j-th component of the adsorbent, v, =
lfI\ i=1,3, Cioor - the macroporosity of the media,

Sintert) Einter

EinterCy P (1 - -mtel) ) E (1 = 5'mcer) I(}

emter, ~

(=)

Next, we perform the decomposition of a nonfinear system (1)-(5). Nontnear function
of the competitive Langmuir adsorption equilibrium is as follows [10]:
0, t. 2] s

ZACBl e - K, XIS AN e

We decompose into a series of Maclaurin ac *r:hc point of zero concentrations for diffusion
components of the adsorbate [13]:

o "pj 82¢'0 . .-‘v-i.'
, C.C+ — LG —L_ i) 4

(01,0 vCQ) [C)(" a(q 12 acnlacv. “ | dczaasch \J‘)

(8)
92,0 42, .0 2,.0
¥ 5%01 Wi ".‘:—Czj =L (0 Cige 5 ()_"“_;'. L d 2o
aC, 8C, Y 5C, N B\ G2 aC? 09633 |

where ! = 2.{0,0,0),7 =1,3. As a rosult, we obtain the following decompositions for (5]

of the socond order of accuracy:

@t X =1, Z)EX:[ =K, (C) - chg - K,C,0) = K3C\Gh),
Q2(t, X =1, Z);X=l = K, (Cy — K,C? - K,C,C, — K,C,Cy), (9)
Rs(t, X =1, Z);X=l = K, (Cy — K,C* — K,C,C; — K,C,C,).

Assuming that I{; = max {I‘\’ ity = 1}:_: where ¢ = K? << 1 (small parameter}, the
problem (1)-(6), taking into account the approximated kinetic equations of phase transfor-
mation (9) containing a small parameter ¢, is a boundary problem for a nonlinear system of
partial differential equations. The solution of problem (1}-(5) will be sought with the help
of asymptotic expansions in the small parameter ¢ in the form of the following series [13]:

Co(t8,.2) = Cy (8, 2) +eCy, (¢, Z) + *C,, (1, Z) + ... {10]

Q,(t.X.2)=Q, (. X. 2} +£Q,, (+. X.2) +2Q,, (. X. Z) + ... =1.3.  (11)

As the result of substituting the asymptotic sum (10), {11} into equations (1)-{6) and re-
placing variables N, = X (), , the initial nonlinear boundary problem (1)-(6) is parallelized
into two types of linearized boundary problems.
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The plr;-()blem Ay J = 1,3: to find a solution of partial differential equations system
for the area D = {(t. X, 2): ¢t >0, X € (0,1},Z € (0,1)}.

Pos Dim:er a*C -{"inzra. "ON 3t
ZO (4.Z) e R L o TGS 30-\') 12
ot w 2 pzr | ot ge [ oX Vil (12
a Dz‘ntm 82-[\'!
=N, (t.X.Z)= el = = 13
6‘{1\” ( ) R 0X? (13)
with initial conditions:
CJO (t! Z)|f=0 = 0‘ ‘:\!JD (t:‘){: ZME:U - {)‘ 'X’ € ([]‘ 1) ' } = 1—7"} |:14J
and boundary conditions for coordinate X of the crystallite:
‘N'}n (tu ){1 Z)],‘(:O = 0* "‘Vjo (t: X1 Z)]X:] = I{jCJ"O (t~ Z) sj = m {15]
The boundary conditions for coordinate Z arc as follows:
Co (6, Z) 1220 = 1; 5'20;” (t,2) 7= = 0. (16)

The probf‘gfﬁ A, m =1 0c: to find in the area D a limited solution for the system of

equations:
803,“ 4 Dmter- 82ij Dinlra.- a.-'\'rjm \ -
o WA= g e Uax ) .
4 Dinlm N
Ve (g XNyl )= —==t - 18
ar i X2 L)
with zero initial conditions:
C).. (t, Z)n:o =0; N, (1‘,..«\’.2-')“=0 =0 j=T.3 {19)

boundary conditions for coordinate X of the crystallite:
Ni (X, Z) 50 =00 N;,, (6, X, Z) oy = K0, (6, 2) = F}, (8, 2) .5 = [0 {20)

m=1 3 .oy
S .
F‘Tm (t’Z):ZZ \I-;:‘("l"" Z}Ckm-l-< (SZ)\_}=13 (21:1

s=0 k=1

The boundary conditions for coordinate Z arc as follows:

i

Crm (8. 2)122 = O U_Z( (t.2) 720 = 0. (22)

The construction methodology of an analytical solution. The Heaviside operating

method [13] is used to find solutions €', and @, = of linearized system of problems (1)-(6).

Assuming that the required functions C, and @, (N, =X - Q,..) are Laplace originals,
in Laplace images we obtain the next problems.
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—

The p;'o_blem AS:
82 C;-D lz . 3 12 Dinr.ra? '/81’\1':]

3\
= niE - - N2 23)
a 22 Dinter p e einter,— R2 Dinter \ 8X JO}X=1 ( /
NG R? . (24
Al Y Iras (1 24
l'.\ 4 ' ’lnt'?a, ' " ) )I
with boundary conditions for coordinate X of the crystallite:
Noe X, Z) xop = 00 Ny (0, X Z) oy = K,C5 (0, 2),0 = 1,3 (25)
The boundary conditions for coordinate Z are as follows:
& £24) 8
C_nn (pa )]Z 1 = C /p’ Cuo (VAL Z)|Z—0 =0 (26)
The problem At m =1.0c:
o*Cr 12 3 2 D, [OND \
e e o (98 ) .
a” Dinter‘ einterj R Dmber* \ 4 X S yal
&N R? ‘
o pN* =0, (28)

Jm

9X? Dintrz\.?
The boundary conditions for coordinates X and Z are as follows:

N, (0.X,2)x20 =0, N (0. X, 2) xoy = K,C; (0,2) - K] (,2).5=1,3. (29)

!'t‘ p .
&l (. Z)1z=1 -0 075 {p, Z)|Z=0 =0. (30)

= e =
Here ] (p, Z) = [ C, (6 ZYe Ml NY (p. X, 4) = / N (X, Z2)e™dt, p =85 the

ver JO - L JO .
itna.ginary-signiﬁc@} parameter of Laplace transform.

The solution of the problem Aj. The solution of boundary problem (22)-(23) is

Ny (0.X,2) = K,C}, (p. 2) bh{z Dmm } (1; / t) f=13 (31

We calculate

ON: (9. X,2)\ —\ _
( FR% }X=1 = H.\//Dimxa( cth (R ' umu&) K,C: (p. Z) (32)

than, substituting (30) and (31) into equation (26) we obtain:

a*Ce
g7~ 2)=0 (33)
where
. , Vein.nr- R2 '
"(f (p)=1.K ( ‘3;\_(’ o p+ R /D P on <R o) x > — )
REAY intra. intra; intra; '

= 3 ﬁ Dintra.,

einterj l l‘. Dinter
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The solution of equation (22} taking into account the boundary conditions (29) are as follows:
1 oh %, (p) Z) L cos vy, (p) £)

v (o o\ e A _ odn "
e, Z) = ] o C; PW {34)

The roots of transcendental cquations ¢k 15, (p)] = cos[v, (3)] = 0 are determined from
transcendental equations v, (3) = (2k — 1)w/2, k =1, oc or:

Fetg (B%) — -'-—,—'— (37} =1 —17*— ( ok l'— ) ke =T. 50 {35)
KYi VL 2 .

Using Heaviside's theorem on the decomposition of a rational complex expression into a
scrics by the rests of the denominator and making a substitution p = —D,;m,.a}.i:}‘?fﬁz, W
obtain the formiila for retwrning the Laplace image to the original (33):

[ \
Cp(t.2) = CF L S: (”/?[y7 p) Z| exp U)LJ) R Eﬂ%}ﬁ i

=1 k-1 p;,—(!': Y, P |

where 31 - the drrerent posttive toots of transecndental equations (34},
Aftel .‘:lm])llﬁ(_a.thllS we obtain:

—~ R QD' ]
Cyy (t-2) =C} (3,2(") inter,

) D'mtra.
: | .
. 21\ - l ,’:c.' " ‘ ¢
o (2k 1)7.'(?05( /\l e*q)(f i L (41 ') (37!
x \—‘ V‘ x - “ - -
e o ‘:mrel, \Slll (KBL ) '; /
Transforining the fornﬁila {30} to fonn we have:
NI pX.Z1=CLip Z) sin(BX) _ G chin () 2 SWFN), o _ o fP
J“ v s (-5)) p Ch h’} (pJJ SLIL (.:j) \‘l Dlnt.ra,

and as a result of applying to it the lleaviside theorcm on the expansion into a scries, we
obtain a formula for calculating the Taplace original of the function N, (£..X, Z}:

N i Byeitany 3~ AIX ) el (Pin) 2] %P (o) (341
: 1 4o ey sin (O f—‘, eh [ye, ()] Ointray, &

P=Pkn 7 — ne

After transformation and going to the function Q@ (¢, X, Z} to describe the concentration
distributions of the adsorbed components in the nanopores of the particles:

{ 5\2 Dintcr_ %

\ ! / Dintra,

0,0, Z) = C™ (1 L0

. R / 2;:, - 1 \ / ]—_)L"rl T !
w ax (2k—Dwsin (8].X) cosf\ - TZ | exp | = i ]

. v v ) 2 ‘ \ ‘h))' . J
s beo 3 aT- Y \
=LA (=N (AL ) X sin () 25 1 S et () J 5

Einter, \Sm‘(ﬁisj 8. /

(39
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The solution of the problem A4 Tlfe,rsolutlon of boundary problem (27), (28) is

Jrn

sh (
NE (9, X,2) = (KiC, (0, 2) - K], (0. 2)) ——L ;=13 ()

From (39) at X = 1 we obtain:

/07\"‘ (p X, Z)\ 2} (H fp
l »
\ 6 o )X 1 \I [ mtm v

N aN; . o .
By substituting N* |x=; and —= in equation (38) we obtain:
4 A Lo

) (01 0.2) - B, (0. 2)) -

J—)intrv.g /

2
U" (\'*

7 ‘.',"lp:l G = -'!';” (). Z) (41}

h01e<I> (p, =T;| R u—cth (R / Py _y F (p.Z),m=100.
i (Ry B \/ Buee :

The solution of the ulhmnooeneous problem (40} (29) are as [ollows [15]:

Gy, (X, 2) = /wpz-wwaw (42)

where the fundamental function of Cauchy’s influcnce K* (p, Z, &), which is determined as: e

I Ki'(p 2,8) = diAhy;Z + ershy 2,0 < Z2<§ < 1
K p Z,& (43)
l K7 (p, Z,8) = dochv; Z + eashy; Z,0 < S < £ < 1 =
All the coeflicients dy,eq, 5 = 1,2 in expressions (41} are determined by the conditious
[15]:
| }C; (pr ZJ §)|Z={+O - }C; (p! Z? é)lz=£—0 =0
4 )
I 17', li - 7
—-] l /A (p,d { IZ €+U {:{}C) (p'. Z!S)lZ:(_O =1

and additional condition (boundary condition at Z = 1):
1C+’iZ:1 = [dochy, Z + (’,Q.S'h",‘jZ]z_l =1 (/)8 (45)

Consistently applying tho conditions conditions (44}-(46) as a result, the Cauchy function
K* (p, Z,€) is lully determined in the following form:

" sh(v;(1—¢§))-ch(v,Z)

» -
'S (A |
1 J

wmz<l<l

i sh ("yj(l = )) (h(,,{)

<Z<l1
ch {7;)

 n
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Defining another function of influence:

11’,. “ (HL

' IIA' - r‘]lu.!d -~ ; \
Hi(p, Z.€) = - \ \’ &_‘f (p, Z, &) (17)

r

J

the Solutlbn ( 4} will take the following form :
Gl (0. X, 2) = =T [ (4 (0,2.8) ~ 5 (. 2.0)) Fy, .€) . (45)
0

The transition to originals. We carry out the transition to the originals C;,,. (t. X.Z)
using the formnula:

Jm

C (c,x,2)=_r-,..j/ LM (9. 2,6) =K (p. 2.6)] < F, (t.€)d€ (49)
0

where L711..] - is the designation of the Laplace inverse transforin operator, * is the imm=s
convolution operator. In the final form, alter caleulating the originals, formula {47) will lobk
like:
- 3 i Di:lt.ra,; v

e';nLch 1S Dintel'_.; .
[ T (HT(t=7.2.6/=K; (0 =7.2.6)) F_[r.L) U+

. / ( vt dr
Jo e : . X ;

. +j (M7 (== 280 = K7 (b= Z.€)) F (r:€) d¢
X 0 . )

-

F

l

were M. (t —7,2,8) KT (t = 7. Z,6), HT (t — 7, Z, 51, K} (t — 7, Z, £) - an Lhe components

of influcnee functions (43), (47), the calculation algouLhms of which are given helow.
Applying to the comnponents of the influence functions (45), (47) the Heaviside theorem

on the development of a rational complex expression into a convergent series, we obtain:

Dintra; i 2
o 1} ) R Jem )t
W (P) shiy ) ch[up)l | & &< ,1 (8,)
(51)
Dmtra] j P Dmtrd 2
+ i Hy) e F ok + i fh () e (k)
s1=1 JQ(M%]) ki=1 wjz (77/{1>

where j';‘, h = 1,4 determine, respectively, the numerators of the components HT (t—1,2,£)
- the influence functions (46).

Calculate the denominators in the expressions of the sums of each of the three terms of
the right-hand side of formnla {50):

_ . d
wy (B1,) =, (p) sh (\“\ o ——chpy(p)il, l o =

v )irn.r& / oy

3K 1 ol .') R
-' SR L TLI) P
Ci)ll.ttr, sin ( }S) 5; - .

. [ 3} \2
-, ( 3 )sm (qu) - Z;E ;"
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where {[5{9} Jk, 5 = 1,00 - set of roots of transcendental cquation (34)

vi (16,) ==, (p) ch |v; (p)] 1;' W ( it \f [_.‘T")

R:Z
=y (;1.11) Cos ['yj (/""'.11)] (—l)51

|, =
2Dinll'uJ Hsq e
WP () =sh R [T ) ch [y(0) o, 0| o ) =
/ . \ \_/ iJeru. ‘] dP : F“#(Nil)_
cty (l/il) - 1 2€inter_,
f 3K: Diwre. T sin® 7] 3 ,
-y | = sin (1, ) cos 1 ()]
20\ Gntery; Yinter, Eunter; ctq (77&1) 1
P 2
R /e (m,)
' =13 B
where ‘l"k’z}i‘gzl]:éo - sct of roots of transcendental equation:
Cluta N 4 ! /!
—;% (;1;’)2 —Wetg (1) +1=0, "y.; (p)y =10, N :
N _
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As a result, we obtain the following expressions of the originals:

Hy (t,2,6) = L7 [H* (p, 2.8)] =

e D3, cOS (,Bi\) sin (7_) (,f')";q) (1— ﬁ}) - COS ("yj (ﬁis) Z) e -..‘.:g.-.». (M)
=) T '
s=1 k=1 &y ( ks)

I+, cos (uﬂl) sin (y; (‘u.é]) (L - ﬁ)) L COS (",-'j (;t,f;l) Z) f:L:;L(“il) !

+y ,
L 1/? (,u,fél)

17=

=

4 Y\‘ Ty, COS (7?;}.-,) sin {7 ("f’il) (1 —¢&)) - cos (v (-r;il) Z) s N E

w? (11,)

Hy (. 72,6) = L7 M (p. 2,8)] =

4

S Blcos (Bl oin o, (84) (1= 2)) -eon () ) O

s=1 k=1 W‘]l (B}{s‘)

o 1t cos {pd ) sin (v, (12 ) (1= Z)) - eos (v (11,) €) G

et 7 (kh)
. %O‘ 1, cos () sin (v (m],) (1~ Z2)) - cos (v, (nf,) €) Pt ) 2
i w7 ()

Next, we [ind the components £ (t, Z,£). We have:

2
f

2 st N9 (ﬁ'is)enlg:;i(ﬁiﬁ,)
" {—} XX w R

Y (p) ch [y, (p)]

where q;’ (p) determine K} (t — 7. Z.€) KT (¢t - 7.2,£) - the components of influence [unc-
tions {45).

We calculate the denominators in the expressions of the sums of each of the two terms
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of the right part of the formula (51):

G (8) =, (p) é! by ()

=8,

A a2 ) P
i, (51y EV AL [3}@ [ 1 el “)) s

B 2k -1 | @ater, '\sin?(,{'ﬁ__s) B, B
. i i
@ (k) = bl =% @] _ owe, |, =
‘) Rz "
rf(}‘ (7?;]“) o 1 4 2eiul.c:r,
l 3K Dinte . sin? 1 3 .
‘ Q—HJ e L L)
Cim.erj inter; e Ctg (,rh‘lﬁ) 1
\| BR T T
YA 771c1 ) (7}1\71)

The expressions of originals are:

KZ(t.2,6=L"[K;"(p2,8)] =

i (o (BL) (L= €)) cos (3 (BL) Z) ()
.._f k=1 “Djl (‘3ic)
YA sut (7, (nfcl) (L=§)) -cos(y (m,) Z)e 77 7 '

ey w? (7, )

KileZe=L"[K)" (28 =

4

LY R

= i {2 sin (75 (BL) (1= 2)) - cos (v, (BL.) €) e

1 k=1 "l‘ :!q}

i —1

S sin (1 (7,) (1= 2)) -eos (3 () ) e (AT

et a7 ()

(t. X.Z) is caleulated on basis on the forimuia (51). We oue Gbrain:

sh <R Dii X>

p
h (R
° < Dintra,_.,- >

Jm

(54)

L [Nf" (p, X, Z}] =L [K,C (p,Z) - oy, Z)] « L7
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We calculate the original of function W5 (p, X'} = sh <R 5o X) / i <R B >

J

22 Sh <R Dinzt)ra- X> :
L[5, (p, X)] Z d pJ exp (p},t) =
ky=0 Zi_z; (sh <R Dimm‘))] ) ”

p=pi, 1]

) ‘.:. Dintraj kQﬂ' . Sln (k‘zﬂ'X) ‘.l.,‘ {' ' |“'I|ra‘ k? 2t>

{2 (_1)k2+1 ) | R2
2,2
. _ ek
Here p! = Binira, h’; f’”, = [) oo are the roots of the equation sh ff? ) > (I
.:. - mtra]

Applying th¢Tormula (50) 111*("4‘)) one calculus the original N, (t. X, Z).

N, (4LX,Z) = L7 (K565, (0. 2) = K, (9. 2)) + ¥, (0. 2)] =

¢
= /0 (KJ-ij (t—1,2) - 5, (t —, Z)) X

'<-I’|
Dintea, ~— mko « sin (ko X'} o Iy ez )
\ k2=0 .
Returning to the tunctions €2, , we obtain:
t/ m—1
Q,. X, 2) =/ | K,C; (t—7,2 -7, 200 (t-—-7.2)] %
0y s=0 k=1
: Dintrﬁs - mky - sin (kg’ﬂ')() ( Dintra 12 \ —
' - - xp [ — ———L 2=t dr.j=1,3
: (2 R? ; T R T ) b
' (57)

The following theorem holds.

The = 1. If the given and unknowa_functions of the boundary-value problems (23)-(23)
and | are Laplace pre-images with relacive to the time variable { and the nnique solvability
Condjtions" of boundary—m!ue pmb!wnq Ay and 4,,, of the Lapia@@ imaaeu; are satisficd, then

mmcd according to fm mu!as ( 7),{39) ;md (ql.),(a?), wh;ch const.u,-ur.-e the sohmon ofuumad
nonlincar boundary-value problem (1)-(6).

2 SIMULATION AND DISCUSSION

The purpose of computer modeling was to study the capabilities of the wmodel proposed for
[uwrther use in techuologies for cleaning carbon emissions into the atmosphere by encrgy and
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Figure 1: Breakthrough curves (ai{t)/c0, i — 1,2,3) [or threc-component adsorption [or a
mixture of methane {CHy, 1 — 1), ethane (CoHg, i -+ 2), propanc (Cylly, i = 3) taken from
different. mass ratios in the inpul mixture: (80%, 15%, 5%) (a), (35%, 35%, 30%) (b)

Figure 2: Desorption curves of gases in zeolite nanopores ((Q2(1)/c0, i — 1,2,3} for a mixture
of methane (Clly, i = 1), ethane (CyHg, 1 = 2), propanc (CsHg, i — 3) takeu in different
mags ratios in the Input mixture: (80%, 15%, 5%) (a), (35%, 35%, 30%) (b)

transport facilities {propanc, CO; and other combustion products). This is one of the key
ways to solve the problem ol global warming and create a safe energy strategy [2]. Propanc
was chosen as an adsorbent, the volume of which covers about 30% of the total gas flow
leaving the car’s engine, Using the developed mathematical theory and technology oriented
to parallel multicore computer calculations, the modeling and calculation of concentration
dependencies of three-component adsorption and desorption curves in nanoporous catalytic
layers are carricd out. Computational experiments werc performed for the experimental
sample 7,10, 12|

3  CONCLUSIONS

High-performance methods and compntational technologies for modeling non-isothermal
gas adsorption in nanoporous solid for threc-component adsorption eguilibrium werbevel-
oped. On their basis, new nonlincar mathematical models wei@ constructed, including the
balance cqualtions of adsorplion/desorption taking into acconnt the interactior==f intracrys-
talite space (micro flows) and intererystallite space (macro {lows). Implemerted cffective
schemes [or parallelizing and linearizing nonlinear models on basis of the decomposition of
the equilibrium function into a series at the point of temperature of the phase transition as
a small parameter. High-speed analytical and numerical solutions of mathematical models
nsing the Ieaviside operational mcethod, their algorithmic and software implementation is
nnplemented, which ensures efficient parallclization of computational processes for inmlticore
compulers and increased computational speed is constructed.
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HaseseHi 0cHOBY MATEMATHYHOTO MOASTIOBAIIIS EI30TEPMivNOl TPHUKOMIIOICHTHO! KONMIIe-
TCTHBIOT adcopbuii ra3y B HAHONOPHCTUMY CEPEOBUTIL 3 BIKOPHUCTUOHUAA pIRoBRart Jleurmio-
pa. 3anponouosalo BRCoKoedeK TR ananiranl Po3u’siI3kn ANs po3snitedol noae aacopbin
3 BHKOPHCTAIIAM OMEPAIiinoro Merony [esicaija ta irrerpaanioro nepersopeinia JIanmaca.

Hapejenio peayibTaTi KOMIT'IOTCPHOIO MO/AEJIOBAHNS HA OCHOBL BUCOROIIBHAKICHNX 0014-

cAClb 1A HArATOALePHHX KOMIL KOTEePAX.



