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Abstract: Wind turbines are the most frequently used objects of renewable energy today. However,
issues that arise during their operation can greatly affect their effectiveness. Blade erosion, cracks,
and other defects can slash turbine performance while also forcing maintenance costs to soar. Modern
defect detection applications have significant computing resources needed for training and insufficient
accuracy. The goal of this study is to develop the improved adaptive neuro-fuzzy inference system
(ANFIS) for wind turbine defect detection, which will reduce computing resources and increase its
accuracy. Unmanned aerial vehicles are deployed to photograph the turbines, and these images are
beamed back and processed for early defect detection. The proposed adaptive neuro-fuzzy inference
system processes the data vectors with lower complexity and higher accuracy. For this purpose,
the authors explored grid partitioning and subtractive clustering methods and selected the last one
because it uses three rules only for fault detection, ensuring low computational costs and enabling
the discovery of wind turbine defects quickly and efficiently. Moreover, the proposed ANFIS is
implemented in a controller, which has an accuracy of 91%, that is 1.4 higher than the accuracy of the
existing similar controller.

Keywords: wind turbine; adaptive neuro-fuzzy inference system; defect detection; subtractive
clustering; grid partitioning

1. Introduction and Related Work

Today, the world is deploying renewable energy sources in order to reduce dependence
on coal and natural gas imports and to cut back greenhouse gas emissions. The governments
will further support solar, wind, hydropower, and biofuels through the variety of programs
and strategies they employ. A 50% growth rate in the fastest pace of global annual renewable
capacity additions over two decades is believed to increase to nearly 510 GW per year. A
total of 66% more wind power plants were added than in the previous year. By the end of
2024, the world promises to install more renewable energy than was commissioned in over
a century, from which was no plant built for the first time commercial electricity generator
power. This policy support will see close to 3700 GW of new renewable capacity added in
more than 130 countries between 2023 and 2028, under the main forecast. By 2020, 95% of
the global increase in renewable energy came from solar PV and wind power because of
their generation cost that is cheaper than both fossil and non-fossil fuels [1].
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Wind turbines are highly efficient from the environmental point of view due to all the
below features they come with, making them an excellent choice for energy production over
other energy systems. First, wind energy is pollution free and emits no greenhouse gases—
the same cannot be said for sources of traditional power like coal, oil, or gas. However, this
also leads to a reduction in the contributions towards climate change and thereby contributes
to the conservation of nature [2]. Moreover, wind is a renewable resource, so it is virtually
unlimited in supply. Modern wind turbines also can perform with high efficiencies in low
wind speed environments, giving them an advantage for placement in many areas across the
globe. They can be land- and sea-faring weaponry, making them more versatile for firepower
options. The economic component is one more aspect that is important. Advancement in
technology with a falling price of wind energy production has made it a major competitor to
other forms of producing energy. In addition, after being built, wind turbines also have little
operating costs, further decreasing the full cost of energy over their life cycle. Lastly, wind
turbines can help countries to reduce their energy dependence and protect their security
of supply. Further, they directly employ thousands of workers and help drive economic
development in the regions where wind turbines are installed. All of these benefits combine
to make wind turbines a vital part of contemporary energy infrastructure and an essential
weapon in the fight against climate change [2].

It needs to be noted that, wind power has one significant disadvantage. It is fluctu-
ating energy, depending on the wind force. The generator, which transforms mechanical
rotational motion into electrical energy, may have issues that cause the output of power to
be reduced or maybe stop entirely. Turbine efficiency can be decreased by malfunctions in
the control system that keeps the turbine operating at its best in response to variations in
wind speed. Damage to the gearbox, which raises the generator’s rotational speed, may
result in decreased energy transfer efficiency or even the turbine stopping entirely [3].

Wind turbine malfunctions have a big impact on how well they work. For instance,
erosion or cracks in a turbine’s blades might make it less effective in capturing wind energy,
which reduces the amount of power that can be produced. Increased friction and vibration
from bearing issues can decrease efficiency and perhaps result in more catastrophic break-
downs [4,5]. These flaws have the potential to drastically reduce the wind turbine’s efficiency,
raise maintenance expenses, and decrease its lifespan. As a result, routine maintenance and
prompt problem diagnosis are critical to the turbine’s stable operation [6,7].

The following methods are most often used to detect damage to wind turbine blades [4].
Detection methods based on acoustic emission. The goal of this technique is to identify

electrical signals that arise from material deterioration, plastic deformation, or the spread
of fissures. By detecting even little flaws in their early stages through acoustic emission, it
can stop them from developing further.

Ultrasonic detection method. Using this method, waves reflected from damage in the
material are detected. These waves help to determine accurately the location and size of
the defect, which allows monitoring of its development and intervening in time to prevent
further problems.

Vibration detection methods. These methods are used to keep an eye out for vibrations
that might be caused by damage or deformation to turbine parts. The ability to detect
anomalous vibrations enables the early detection of issues and the implementation of
corrective action before serious failures arise.

Thermographic detection method. This method allows measuring the temperature
difference on the surface of the turbine. The detection of abnormal temperature zones can
indicate the presence of damage, such as overheating or internal defects in the material,
which are not visible.

Detection methods based on machine vision. These methods use images to analyze
the condition of the turbine. Machine vision systems can automatically detect defects such
as cracks, corrosion, or other damage by analyzing photos or videos from different angles
and in high resolution.
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Detection methods based on strain measurement. These techniques use strain sensors
to detect small changes in length or deformation of turbine components. Measuring such
changes helps to identify cumulative defects that can lead to serious breakdowns if not
removed in time.

Methods of machine learning, feature engineering, deep learning, and transfer learning.
A robotic RV reducer can be used, for example, to investigate mechanical damage to a wind
turbine engine [8,9]. Detection of malfunctions in bearings of servomotors can be carried
out on the basis of deep learning, which makes it possible to increase the accuracy of their
detection [10]. The application of such modern approaches demonstrates a high probability
of the detection results of various mechanical damages in wind turbines.

Wind turbines are complex systems with non-linear relationships between parameters.
An adaptive neuro-fuzzy inference system (ANFIS) successfully models these relationships,
providing a better understanding of turbine processes and more accurate identification
of defects. Compared to traditional neural networks, ANFIS adapts to new data faster,
making it more convenient for real-time monitoring. Wind turbine research methods based
on adaptive neuro-fuzzy inference systems combine elements of fuzzy logic and neural
networks for modeling and optimization of turbine performance [11–16]. Key wind turbine
properties, including power factor, rotor speed, and power output, are frequently modeled
using ANFIS. The model uses input variables to predict the output performance of the
turbine, trains on historical data, and is used to accurately predict turbine behavior under
various conditions [17]. ANFIS is used to develop adaptive controllers that can effectively
control turbine operation under variable wind speed conditions. Such a controller provides
optimal control of the turbine, adapting to different operating conditions. This makes it pos-
sible to increase the efficiency of the turbine and stabilize its operation during disturbances.
Using information from the blade parameters and other turbine attributes, ANFIS is used
too to forecast the power factor of wind turbines. By optimizing the turbine’s functioning,
this method allows for the accurate prediction of its performance and the reduction in
energy losses.

The main methods, which are used in wind turbine research based on ANFIS, are
next [18–21]. Research techniques based on ANFIS generally enable efficient modeling and
optimization of wind turbine operation, boosting the machines’ stability and efficiency
in the face of fluctuating external influences. The study [22] discusses the creation of a
novel ANFIS-based controller for managing a power system that includes a wind turbine.
Improving the power system’s dynamic responsiveness when faults occur is the primary
objective of the research. System modeling has shown that using ANFIS can greatly reduce
fluctuations and guarantee system stability in the face of a variety of shocks. Paper [23]
investigates the combination of ANFIS and a proportional–integral (PI) controller for
voltage regulation in a power system with a wind turbine and a static reactive power
compensator. The PI controller is optimized using a genetic algorithm. The results of
the study show that such a combination of controllers provides better voltage regulation
and improves the transient stability of the system. Paper [24] deals with ANFIS-based
real-time power estimation for power systems. The use of ANFIS for power prediction
and control allows power estimation with high accuracy, making it suitable for use in real-
world environments. The application of ANFIS to increase stability and control efficiency
in power systems outfitted with wind turbines and other renewable energy sources is the
main theme of all noted publications. To make power systems more stable in the face of
diverse disruptions and adjustments to operating parameters, the integration of adaptive
intelligent control systems is prioritized. For example, the ANFIS-based controller for
regulating the operation of a power system containing a wind turbine is suggested in [25].
Improving the system’s dynamic response following malfunctions receives the majority of
emphasis. Thanks to the use of ANFIS, the system demonstrates high performance and the
ability to quickly damp oscillations. The advantage of the approach lies in the ability of the
controller to adapt to different conditions and ensure stable operation of the system during
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disturbances. The disadvantage is the complexity of the controller implementation and the
need for significant computing resources.

In Ref. [26], a new scheme for controlling the angle of inclination of wind turbine
blades is considered. A hybrid strategy combining a self-similar PI controller with ANFIS-
based compensation is used to improve system performance under variable wind speeds.
Studies show that this approach increases system response speed and improves turbine
stabilization. The main benefit is reduced system setup time and increased accuracy, but
setup complexity remains a significant challenge. Article [27] is devoted to the use of ANFIS
for forecasting the power factor of wind turbines. The ANFIS model is based on blade
profile type parameters and other variables such as the Schmitz coefficient. Research results
show that the ANFIS model outperforms neural networks in power factor prediction. The
advantage of this approach is high prediction accuracy, but training the model requires a
large amount of data, which can be a challenging task. The articles [28–33] demonstrate the
successful application of neuro-fuzzy systems to optimize the operation of wind turbines,
especially in the context of increasing the efficiency and stability of the system.

The work of [34] is the closest related work for the proposed system for the detection
of wind turbine defects. This paper is devoted to the development of intelligent systems
for fault detection and isolation in wind turbine drive systems. The authors are focusing on
the drive part of the horizontal-axis wind turbine using ANFIS. As a result, the described
intelligent system can effectively detect the faults in the drive part of wind turbines. The
adaptive neuro-fuzzy method [34] has the number of rules, which vary from 16 to 32,
depending on the number of prerequisite parameters. The simulated faults of this ANFIS
are from 0.97 to 0.3 due to the modification of the proposed method.

The work of [35] is the closest related work describing the controller for wind turbine
blade defect detection based on virtual reality technology and deep learning. The controller
employs the U-Net architecture to segment blade images for detecting four main types of
defects: cracks, edge erosion, delamination, and lightning damage. This U-Net architecture
is used for the segmentation of images with the size of 512 × 512 pixels, similar to the ANFIS
structure proposed in this article. After training of 100 epochs, the controller obtains the
Dice coefficient of 0.658. Moreover, this type of controller needs big computing resources
and couldn’t work in real time.

The system, proposed by the authors, uses an unmanned aerial vehicle (UAV) that
automatically takes pictures of wind turbines. The UAV takes a series of pictures of the
turbines from different angles and transmits them in real time to the administrator’s
computer. These images are processed in a computer frame-by-frame using a neural
network, such as YOLO [36], for automatic detection of possible defects on the blades
or other parts of the turbine. YOLO and the other traditional CNNs specialize in object
recognition, determine the existence of defects such as cracks or damage, and create a data
vector containing information about these probabilities [37–40].

Besides this, the two-stage object detection models, which are used by UAVs, have
shown significant progress in detecting wind turbine blade defects. However, they still
face several challenges. Specifically, these models often have a large number of parameters,
resulting in significant computational demands, particularly for real-time applications.
Additionally, their detection speed remains insufficient, limiting the practical use of these
models for online identification of wind turbine blade defects. Therefore, despite the
relatively high detection accuracy, these two-stage defect detection models need further
improvements to increase their real-time performance and simplify their integration into
engineering applications [41]. For example, the CNNs, which are used in modern two-stage
object detection models on UAV images, give the result of the presence of damage on the
wind turbine as a sequence of probabilities on how to assign damages to a certain class
on the analyzed image [36,41]. This can lead to some uncertainty in damage recognition.
Fuzzy logic and neural networks can model and manage these uncertainties more reliably
than traditional methods [42]. This is achieved by the fact that ANFIS systems process
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fuzzy input values based on known formulas and rules, and they make a proper inference
regarding the class of wind turbine defect afterwards [8].

The main problems of noted applications remain the complexity of setting up models
and the need for significant computing resources for training and insufficient accuracy.
Therefore, the goal of this study is to develop the improved adaptive neuro-fuzzy system
for wind turbine defect detection, which will reduce computing resources and increase its
accuracy. To achieve the goal, the following objectives were formulated:

• Development of a neuro-fuzzy system model for wind turbine blade defect detection;
• enhancing the system learning process to increase the accuracy of defect detection

while minimizing computing costs;
• improving the accuracy of the ANFIS.

The rest of the paper is structured as follows: in Section 2, the existing methods
for the control and detection of wind turbine blade defects are considered. In Section 3,
the architecture of the ANFIS for detecting wind turbine defects is described, as well as
neuro-fuzzy system models. In Section 4, the results of testing models are presented, and
the proposed neuro-fuzzy controller is described. Section 5 summarizes the results and
includes future research directions.

2. Methods and Materials
2.1. ANFIS Architecture

As was noted in the Section 1, the data about the probability of the defect’s existence
can be fuzzy, so fuzzy logic is used for further analysis. This allows for more accurate
processing of these probabilistic data, taking into account the possible uncertainty. For
this, the ANFIS system is used, which combines the capabilities of neural networks and
fuzzy logic. Moreover, ANFIS works without packet processing, so it is optimal in speed
compared to image processing by a convolutional neural network, which is most often
used by UAVs. ANFIS analyzes the data vectors obtained from YOLO and determines
the probability of the defects existence on the turbines, providing additional accuracy and
reliability in the operation of the system.

As a result, the system provides an estimate of the probability of the defect’s existence
for each turbine image. These data can be transmitted to the operator or used to generate
reports for maintenance. This approach helps to detect problems in time, reduce the risk of
missing defects, and optimize the process of diagnosing turbines.

An adaptive neuro-fuzzy inference system is a combination of two approaches: neural
networks and fuzzy logic. Such a system uses the strengths of both methods to create
models and controllers that can work with uncertain and fuzzy data while having the
ability to learn and adapt [43].

The ANFIS architecture consists of five layers (Figure 1):
Fuzzification layer: In this step, the inputs transform into fuzzy variables using

membership functions. Each variable is described by fuzzy rules such as “low”, “medium”,
or “high” defined by membership functions (e.g., Gaussian or triangular).

Rule layer: At this level, vague rules of the type “If . . ., then . . .” are formed. These
rules define the relationship between input variables and desired outputs.

Normalization layer: At this stage, all the output signals are normalized so that the
sum of the weights of all the rules is equal to one. This helps to standardize the results of
each rule.

Defuzzification layer: The results of fuzzy rules are transformed into crisp values that
correspond to the input data. This is done by applying linear functions to each fuzzy rule.
Output layer: At this level, all the results of the previous layers are summed up, and the
final output of the system is obtained.

The typical structure of the ANFIS consists of a multilayer feedforward network where
each node performs a specific function, known as a nodal function, on the signals it receives.
Each node is associated with a set of parameters that define its behavior. The formulas
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for these nodal functions can differ between nodes, and their selection depends on the
input–output relationship of the network.
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In the ANFIS network, the connections between nodes merely represent the flow of
signals and do not have weights. To distinguish node types, the adaptive (square) nodes
represent those with associated parameters, while fixed (circular) nodes lack parameters.
The complete set of parameters for the adaptive network is the combined set of parameters
from all its adaptive nodes.

To achieve the desired mapping between inputs and outputs, the network parameters
are adjusted during the training process using the provided training data and a defined
learning algorithm. The typical architecture of ANFIS with two inputs and two outputs is
presented in Figure 2 [44].
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Advantages of neuro-fuzzy systems:

1. A combination of the strengths of neural networks and fuzzy logic: Neuro-fuzzy
systems combine the ability of neural networks to learn from data and adapt with the
ability of fuzzy logic to work with uncertain or fuzzy data.

2. Adaptability: The system can learn and adjust its parameters on the fly, making it
very flexible and suitable for tasks where data or conditions may change.

3. Ability to process vague information: Fuzzy logic allows the system to work with
vague, uncertain, or incomplete data, which is a big plus in situations where precise
information may not be available.
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ANFIS is widely used in systems that require adaptability, accuracy, and processing
of fuzzy data. Considering these advantages, the authors use the neuro-fuzzy system to
detect wind turbine defects.

2.2. Neuro-Fuzzy System Models

According to objective 1 above, the authors developed neuro-fuzzy system models for
wind turbine defect detection, which are described below.

For building a neuro-fuzzy model, it is necessary to change the input data, the methods
of generating the initial fuzzy models, as well as conduct its training.

2.2.1. Input Set for Proposed Neuro-Fuzzy System Model

To build a model of a neuro-fuzzy system for analyzing the existence of wind turbine
defects, the MATLAB R2023a environment neuro-fuzzy designer has been used.

The input to ANFIS is a vector of features that contains the observation level corre-
sponding to each of the defect classes. It is important that the dataset contains enough
examples of each type of defect and the normal state of the wind turbine. This ensures
that the model is trained to recognize all the right classes and it is not biased. If the task
of detecting wind turbine blade defects is reduced to recognizing simple regularities or
typical patterns in the data, the ANFIS is able to train even on a small sample. Moreover,
thanks to the fuzzy logic, the ANFIS can generalize from limited data, which reduces the
need for a large number of examples.

The input data for the simulation are vectors of features that correspond to the presence
of wind turbine blade defects in the image. For example, the vector of features 0.8492,
0.0185, 0.1318, and 0.0004 indicates, accordingly, the probability of corrosion in the image is
0.85, erosion—0.02, cracks—0.12, and almost no defect (0.00). That corresponds to the real
image that is given in Figure 3.
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To train the ANFIS, the authors used a training sample of 400 images (100 vectors of
features per each damage class) as the results of image classification by the SqueezeNet
neural network [46].

2.2.2. Comparing Methods of Improved ANFIS

In MATLAB, the different methods of generating initial fuzzy models are used for
designing neuro-fuzzy system models in the neuro-fuzzy designer environment [47]. The
two main methods are grid partitioning and subtractive clustering. They have different
approaches to building fuzzy systems.

Both of these methods are implemented based on Sugeno–Takagi fuzzy inference. A
typical rule of the proposed ANFIS is the following:

i f corrosion ϵ m f i and erosion ϵ m f j and crack ϵ m f k and normal ϵ m f l then output ϵ f (u),
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where mf is a membership function of correspondence input value and f (u) is a linear
function of the input variables. This linear function is f (u) = p1x1 + p2x2 + . . . + pnxn + r,
where x1, x2, . . ., xn—inputs of the system, p1, p2, . . ., pn—linear parameters that are adjusted
during training ANFIS, and r—a free member, which is also set during training [44].

Grid partitioning creates a fuzzy system by uniformly partitioning the input space
into segments or grids. Each variable of the input space is partitioned into several levels
(usually uniformly), and then all possible values of these levels are combined to form fuzzy
logic rules. This leads to the creation of a large number of rules for each combination of the
input variable values. The advantage of this approach is the simplicity of implementation
and clear interpretation of the fuzzy system. However, this method can become inefficient
for large data sets or when the number of input variables increases, since the number of
rules grows exponentially with the number of levels and variables.

The fuzzy system generated by grid partitioning has four variables at the input:
corrosion, erosion, crack, and normal, which are given by data in the range [0;1]. That
demonstrates the probability of the presence of each of the defects in the image. The general
scheme of the generated fuzzy system is presented in Figure 4.
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Implementation of the Sugeno–Takagi inference mechanism of the fuzzy system
generated by the grid partitioning method is carried out in the block ANFIS (Sugeno).

This fuzzy system defines the corrosion variable by four membership functions of the
Gaussian form; the other input variables are defined by only three similar membership
functions, which are described by the formula:

f (x, c, δ) = e
−(x−c)2

2δ2 (1)

where f is a function, x is a variable, c is the coordinate of the maximum, and δ is concentra-
tion coefficient [48].

The MATLAB environment automatically selected the membership functions. This
is the most optimal choice for further processing by a neural network. The number of
membership functions is selected experimentally for the best ANFIS training result.

Accordingly, the rule base of such a fuzzy system contains 108 rules. It is worth
noticing that ANFIS works based on the Sugeno fuzzy inference mechanism (Figure 5).

Subtractive clustering uses clustering to identify groups of data points that have
similar characteristics and creates fuzzy logic rules based on these clusters. After that, the
centers of the clusters are used as the centers of the fuzzy sets, and the number of rules
depends on the number of clusters found. This approach does not partition the input space
uniformly but adapts to the distribution of the data. This approach is effective for large
data sets, especially when the data distribution is uneven. Subtractive clustering creates
fewer rules compared to grid partitioning, which makes the system more compact and
faster. However, such a fuzzy system can be difficult to adjust the clustering parameters to
obtain an optimal fuzzy system. The method may also take more time to set up compared
to grid partitioning.
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The fuzzy system of detection for wind turbine blade defects, created by subtractive
clustering, is presented in Figure 6. Implementation of the Sugeno–Takagi inference mecha-
nism of the fuzzy system generated by the subtractive clustering method is carried out in
the block ANFIS_clust (Sugeno).
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Each of the input variables is defined by three Gaussian membership functions as well
as the grid partitioning model. This fuzzy system contains the three fuzzy rules only, which
significantly increases the speed of the overall system compared to the previous one. The
operation of the rule base is shown in Figure 7.

The main difference between these two methods is how they create rules for the fuzzy
system. Grid partitioning evenly partitions the input space into grids, which is suitable
for small systems but becomes unwieldy for large datasets. Subtractive clustering finds
clusters in the data, creating a more adaptive and compact system. However, this method
can require more careful setup.

The difference between these two generated fuzzy systems is clearly visible from their
structure (Figures 8 and 9).
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2.2.3. Training of the Improved ANFIS

To reach objective 2 regarding the increasing accuracy, the authors propose employing
grid partitioning and subtractive clustering methods, which are described below.

The neuro-fuzzy system is a combination of two methods: neural networks and fuzzy
logic. The basic idea is, firstly, to create a fuzzy system that can handle uncertain or fuzzy
data and, secondly, to use the learning ability of a neural network to automatically adjust
the parameters of that system [49–51].

ANFIS is training and modeling in the MATLAB environment, employing the hybrid
training approach. The last one combines the backpropagation with the least squares
methods. Backpropagation is used to adjust the parameters of membership functions
in a fuzzy system, and the least squares method is employed to learn the parameters of
linear regression in the original rules. This hybrid approach provides the efficient and
accurate optimization of ANFIS parameters, combining the advantages of both methods:
fast correction of inference parameters using least squares and slower, but more detailed,
tuning of membership functions through backpropagation.

The learning process usually starts with defining the input data and dividing it into
fuzzy sets. This is done using membership functions. Next, a set of “If . . ., then . . .” rules are
formed, which connect these fuzzy sets with the expected initial data [52]. Once the system
is configured, it goes through a learning process. This means that the system receives
inputs along with known outputs and uses them to adjust its parameters. Basically, the
neural network learns from this data and gradually improves the accuracy of the system by
changing the weights or parameters of the membership functions to reduce the difference
between the predicted and actual results.

Learning usually takes place in two stages. First, the system adjusts the linear parame-
ters using the least squares method, which helps to make the output as close as possible to
the correct result. Then, in the error backpropagation process, nonlinear parameters such
as membership functions are tuned to further improve the accuracy of the system.

The learning process of the neuro-fuzzy system based on the fuzzy system generated
by the grid partitioning method is shown in Figure 10. The training result for 100 epochs
showed an accuracy of about 82%.
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grid partitioning.

The process of learning a neuro-fuzzy system based on a fuzzy system generated by
subtractive clustering was carried out for 100 epochs and showed a learning result at an
accuracy level of 91% (Figure 11). This significantly improves the performance of the defect
detection system based on ANFIS.

Even if additional inputs were not used during training, the system ought to be able
to predict results for them with accuracy once it has been trained.
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3. Case Study and Implementation
3.1. Results of Testing

To reach objective 2 regarding reducing computer costs, the authors propose employ-
ing the subtractive clustering method because of its small rule base, as is noted below.

Testing of the proposed neuro-fuzzy system was based on a sample of 60 data vectors.
The test result of the neuro-fuzzy system based on the fuzzy system generated on the basis
of grid partitioning (Figure 12) shows an average test error of 18%.
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The analysis of the proposed models of neuro-fuzzy systems shows that both systems
can be used in the wind turbine system for defect detection. However, to increase the
effectiveness and speed of such a system on a small sample of input data vectors, it is better
to use the ANFIS based on the subtractive clustering.

In the similar ANFIS method [34], the number of rules varies from 16 to 32, depending
on the number of prerequisite parameters, which creates an additional load on computing
resources. In comparison, the proposed improved ANFIS based on subtractive clustering
method, which uses only three rules for fault detection, ensures high accuracy (average
error only 9%) and low computational costs.

3.2. Implementation of the Improved ANFIS

To reach objective 3, the authors proposed an improved controller, which is
described below.

A neuro-fuzzy controller is a system that combines two approaches: neural networks
and fuzzy logic. Its task is to manage various processes automatically, adapting to changes
in the environment and working with vague or uncertain data.

For example, fuzzy logic helps the controller to work with vague concepts such as “a
little cold” or “very fast” that cannot be precisely determined by conventional methods. A
neural network, for its part, allows the controller to learn from experience, improving its
actions based on past results.

A neuro-fuzzy controller is used where it is difficult to create accurate mathematical
models, but the system must still respond to changes in conditions. It can control vari-
ous devices, such as wind turbines, cars, or robots, helping them work more efficiently
and adaptively.

The Simulink environment was used to model the neuro-fuzzy controller. The 1D
lookup table module is used to enter data vectors of input variables, which allows reading
all values of input variables from the data file (Figure 14). The controller is programmed by
a neuro-fuzzy network generated by the subtractive clustering method.
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The ANFIS block in Simulink contains tools for implementing an adaptive neuro-fuzzy
controller. It includes input variables, membership functions to translate values into fuzzy
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sets, a set of “if-then” rules to define relationships between inputs and outputs, a fuzzy
inference engine to process the rules, defuzzification to transform fuzzy results into a
crisp value, and learning to adapt parameters based on input data. As a result, the block
generates output signals that are used to control the system.

Graphic display of input variables and output data is presented in Figures 15 and 16.
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The analysis of modeling and simulation results demonstrates the correct operation
and efficiency of the developed neuro-fuzzy controller. For example, with the value of the
input variables belonging to the interval [0;1], the output of the system is a value from the
interval [0;4]. The output value reflects the type of damage: corrosion, which is situated
in the interval [0;1], erosion—(1;2], crack—(2;3], and the value, which displays the image
without blade defects and is situated in the interval (3;4].

After processing the data by the neuro-fuzzy controller, the results are transmitted
to the system operator. These may include estimates of the probability of a defect, recom-
mendations for action, or automatically generated reports. It is important that the results
are presented in an understandable format for quick decision making. Once installed, the
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system continues to learn and adapt its algorithms based on new incoming data. This
allows it to constantly improve and increase the accuracy of defect detection. The proposed
controller provides an accuracy 1.4 higher than the existing controller [35], which has an
accuracy near 66%. Therefore, the inclusion of a neuro-fuzzy controller into the wind
turbine defect detection system allows automating the process of detecting defects and
creating the possibility for reducing maintenance costs.

4. Discussion

The paper represents a significant improvement of the adaptive neuro-fuzzy inference
system [34]. In existing adaptive neuro-fuzzy models, the number of rules varies from 16
to 32, depending on the number of prerequisite parameters, which creates an additional
load on computing resources.

In comparison, the authors investigated grid partitioning and subtractive clustering
methods and proved that subtractive clustering has advantages, which are presented in
Table 1. In particular, the proposed ANFIS model, which is based on the subtractive
clustering method, uses the three rules only for fault detection. As a result, that ensures the
low computational costs and allows finding wind turbine defects quickly (about an 11%
increase in the image processing speed during system testing) and accuracy (about a 9%
accuracy of wind turbine defect detection).

Table 1. Comparison ANFIS’ generated by grid partitioning and subtractive clustering methods.

Method Number of Rules Execution Time, s Accuracy, %

Grid partitioning 108 9.83 82
Subtractive clustering 3 8.75 91

It is worth noting that, despite the redundancy, the grid partitioning method can also
be used in real defect detection systems, especially in the scaling system stage. In such
cases, this method can increase the accuracy of ANFIS training, which is important for
systems with a large set of input parameters.

As it follows from Section 3.2 above, the existing controller [35] has an accuracy of
about 66%, while the proposed ANFIS controller has an accuracy of 91%. Moreover, the
developed controller is trained using real images for wind turbine defects, while the existing
controller [35] is trained on the basis of synthesized images.

A potential drawback of the proposed ANFIS is the relatively long training time of the
neuro-fuzzy model using the subtractive clustering method in comparison with the grid
partitioning method. It is caused by the small rule base of the first one. However, due to
all the advantages of the subtractive clustering (the low computational costs and the high
speed), its disadvantages are not so significant.

Therefore, the use of the proposed adaptive neuro-fuzzy inference system allows for
the detection of wind turbine defects with lower complexity and higher accuracy.

5. Conclusions

This paper considered the use of an improved adaptive neuro-fuzzy inference system
for the detection of wind turbine defects. Simulation results demonstrated the effectiveness
of using ANFIS to analyze defect data such as cracks, erosion, and corrosion.

A comparison of two methods for building fuzzy systems—grid partitioning and
subtractive clustering—showed that the controller built on subtractive clustering has a
high accuracy of 91% after training for 100 epochs. This is significantly better than the grid
partitioning result, where the accuracy was only 82% for the same number of epochs. The
system built by the subtractive clustering method has only three rules, which makes it more
compact and faster compared to the 108 rules in the grid partitioning system. Due to fewer
rules and a more compact structure, the system based on subtractive clustering consumes
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fewer computing resources, making it more efficient for large data sets or complex tasks
such as the detection of wind turbine defects.

A comparison of the proposed ANFIS for the detection of wind turbine defects with
the noted related system showed that it has significant advantages in the number of rules
and a low calculation error (9%).

The improved ANFIS is implemented as a controller, and simulation results confirmed
its efficiency. The accuracy of the developed controller is higher by more than 25% compared
with the existing one.

The introduction of a neuro-fuzzy system into a real wind turbine monitoring system
allows automating the process of detecting defects, reducing the risk of serious breakdowns,
and increasing the efficiency of turbine operation. Such a system also reduces maintenance
costs, allowing timely response to identified problems.

Further research could involve the implementation of ANFIS in real operating con-
ditions to evaluate its effectiveness and reliability for long-term projects. Additionally, it
would be worth exploring the application of ANFIS to other types of renewable energy,
such as solar panels or hydroelectric power plants, for monitoring and controlling their op-
eration. Moreover, studying the performance of ANFIS in real-time scenarios could provide
valuable insights into its adaptability and responsiveness under dynamic conditions.
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