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Abstract 
Providing the world's population with good-quality drinking water is one of the most important current 
global challenges.  The authors suggest using artificial intelligence tools for factor analysis of water 
pollution of various origins, modelling probable parameter series, predicting the parameters of ongoing 
biological and chemical processes, and identifying data with a low level of reliability. The proposed method 
of analyzing environmental information allows to identify the factor influence of polluting compounds and 
to model the requested data series.  The construction of the machine learning model described in the study 
involves selecting the most efficient information processing algorithm, adapting it to the training data set 
to build the required model design, further testing and calculating metrics. In order to improve the 
forecasting accuracy, a meta-classifier has been developed that combines several basic classifiers as part of 
an assembly model. 

Integration of the described methods into a hydroecological monitoring data processing system can 
increase the overall performance and correctness of information analysis, as well as make it possible to 
model scenarios of development of physical and chemical parameters.   
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1. Introduction and State of The Arts 

One of the world's most important challenges today is to provide the world's population with 
drinking water of good quality. Systematic researches in recent decades have shown that the quality 
of water in surface water sources is deteriorating almost everywhere. The establishment of chemical 
and biological pollution is determined using agreed-upon laboratory methods. Practice proves that 
the time spent on transportation of the selected samples has a dramatic impact on the quality of 
research. For example, there are more than 20 regional water laboratories and 4 national laboratories 
in the system of State agency of water resources in Ukraine. Insufficient laboratory equipment at the 
regional level and overloading of national laboratories leads to a loss of correctness of indicators. 
The discrepancy between the data of the authors' research and these laboratories reaches 30-40%. In 
addition, water quality measurements are usually based on a single point without spatial coverage 
and insufficient sampling.  

A promising approach to water quality monitoring is to actually assess the quality of water in 
lakes and rivers with the help of using remote sensing images, as each substance has a unique 
spectral character [27, 32]. The relationship between the percentage of the print and the wavelength 
when a substance is exposed to the electromagnetic spectrum is known as the spectral signature, 
which is unique to each substance [1, 26]. Thus, the amount of a pollutant in water can be estimated 
from the intensity of reflection at different wavelengths by creating an empirical statistical 
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regression between them [29]. Water quality data is expected to grow rapidly as monitoring methods 
improve [30, 31]. 

Promising tools for monitoring data processing include forecasting of a multidimensional time 
series using stacked networks LSTM. The structural design of the LSTM network can be applied 
based on its effectiveness in predicting time series and in learning long-term dependencies [2]. Water 
quality monitoring can be carried out manually, as well as with the help of autonomous vehicles 
using modern robotic systems [3]. At the same time, the construction of integrated water quality 
monitoring systems based on the Internet of Things requires the compatibility of various sensors 
and devices, which will allow monitoring water quality in real time [4, 35]. Such tools should reflect 
the basin principle of information display. At present, there are modern tools for accumulating and 
analyzing spatial sub-basin and river section data, which is used in HydroATLAS, obtained from the 
global HydroSHEDS database [5, 24]. Meanwhile the construction of an integrated system for 
processing monitoring information should take into accounts at least four data layers: national, 
transborder, regional and global [6]. Forecasting the hydroecological state of water resources is 
solved with machine learning tools [16, 21-23, 37]. Among the machine learning methods used to 
assess the physical, chemical and ecological state of water bodies are support vector regression (SVR), 
artificial neural networks (ANN), random forest (RF) and gradient boosting machine (GBM) [33].  

The concept of an intelligent surface water quality monitoring system has been continuously 
expanded by the idea of combining online water quality monitoring with various online automatic 
monitoring devices for data collection, communication protocol and software for data interpretation 
[28]. Implementing an online surface water monitoring system involves calibration and verification 
methods. Challenges in design and implementation are highlighted as indicators for future 
improvement and study [7, 25].  

It is worth noting that classical distributed measurement systems (DMS) under the new control 
paradigm are integrated into more complex CyberPhysical Systems (CPS) along with the physical 
infrastructure [18].  

The review of existing environmental water quality monitoring systems demonstrates the 
features that affect the quality and reliability of the generalised results of data processing. Given the 
biological and chemical processes, the most vulnerable parameter of such studies is the time, i.e. the 
speed of processing the selected sample or test [34, 36]. The existing problem of incompatibility of 
data formats is quite critical, making it difficult or impossible to display their analysis on all four 
layers of a potential integrated monitoring information processing system. Other factors such as 
insufficient coverage of environmental data sources, inconsistent application of methodologies, and 
human factors, also contribute to the poor quality of existing studies. 

The authors propose to use artificial intelligence tools for factor analysis of water pollution of 
various origins, modelling probable parametric series, forecasting the parameters of ongoing 
biological and chemical processes, identifying data with a low level of reliability, and, as a result, 
eliminating the negative impact of the identified factors and increasing the speed of functioning of 
the integrated environmental information processing system. 

2. Methods and Materials  

The authors propose an approach that includes seven main stages of data collection, processing and 
visualization of results.  

To collect data at Stage 1, within the framework of the State Water Monitoring System, the State 
Hydrometeorological Service monitors the hydrochemical state of water at 151 water objects and 
carries out hydrobiological observations at 45 water objects. Data on 46 parameters are obtained, 
which make it possible to assess the chemical structure of water, biogenic parameters, the presence 
of suspended particles and organic matter, major pollutants, heavy metals and pesticides. Chronic 
water toxicity is monitored at 8 water objects. Indicators of radioactive contamination of surface 
waters are determined [8]. 



The State Ecological Inspectorate of the Ministry of the Ecology of Ukraine collects water samples 
and obtains data on 60 measured parameters. 

The State Water Agency of Ukraine monitors rivers, reservoirs, canals, irrigation systems and 
reservoirs within integrated water management systems, water supply systems, transborder 
watercourses and reservoirs in the areas of influence of nuclear power plants. Water quality is 
monitored for physical and chemical parameters in 72 reservoirs, 164 rivers, 14 irrigation systems, 1 
estuary and 5 mixed-use canals. In addition, water management organizations monitor the content 
of radio nuclides in surface waters as part of radiation monitoring. 

The Sanitary and Epidemiological Service of the Ministry of Health of Ukraine monitors sources 
of centralised and decentralised drinking water supply, as well as recreational areas along rivers and 
reservoirs. 

Enterprises of the State Geological Service of the Ministry of Ecology of Ukraine monitor 
groundwater conditions. At the monitoring sites, the level of groundwater occurrence or availability 
and its natural geochemical composition are assessed. The enterprises determine 22 parameters, 
including the concentration of heavy metals and pesticides [9; 10]. 

Pre-processing at the Stage 1 includes data cleaning, determination of missing data, coding of 
categorical variables, normalisation and scaling of numerical data according to principles [19]. 

At the Stage 2, the data are divided into training and test sets. This provides an objective measure 
of their effectiveness. The data are split in a 70:30 or 80:20 ratio, with the larger portion used for the 
training model and the smaller portion for testing one. Let’s have the initial data set          
 

𝐷 = {(𝑥! , 𝑦!)}!"#$ , 
 
where 𝑥! – quotient vectors, and 𝑦! – corresponding marks. Then the training set  

 
𝐷%&'!$ = {(𝑥! , 𝑦!)}!"#(∙$ ,	 

 
where 	𝑘 ∈ (0,1) contains k% of the total amount of data.  

The testing set  
 

𝐷%*+% = {(𝑥! , 𝑦!)}!"(∙$,#$  
 

contains correspondingly (1−k)% of the total amount of data. This approach allows the model to be 
trained on 𝐷%&'!$ and evaluate its performance on an independent set of 𝐷%*+%, which reduces the 
risk of overtraining and provides better generalisation. 

At the Stage 3, the models are selected and their hyperparameters are set. Model selection involves 
comparing different algorithms and determining the most effective one. Classification models can be 
built on the basis of, for example, Decision Trees, Logistic Regression, Support Vector Machines and 
Neural Networks [14, 17, 19, 20]. 

Setting of hyperparameters is a critical step in creating machine learning models, as properly 
selected hyperparameters can significantly improve model productivity. In this case, it is advisable 
to use the cross-validation methods GridSearchCV and RandomizedSearchCV to optimise 
hyperparameters. GridSearchCV systematically searches all possible combinations of 
hyperparameters from a given set. 

Let Θ = (Θ#, Θ-, … , Θ$) – be the set of hyperparameters, in this case GridSearchCV will look for 
the most optimal meanings using modal estimate for every combination Θ! ∈ Θ. 

Method RandomizedSearchC performs a random search for hyperparameters in a given space, 
which reduces computational costs. It randomly selects combinations Θ! from a given distribution Θ 
and estimates the model for each selected combination. Both methods use k-fold cross-validation, 
where the original data set D is divided into k subsets, and the model is trained on k-1 subsets and 



tested on the remaining subset, repeating the process k times. The optimal hyperparameters are those 
that maximise the average performance of the model over all kkk partitions. 

At the Stage 4 the model is trained by adapting the algorithm to the training data set. This 
process is usually based on minimising the loss function L(Θ), which quantifies the difference 
between the model predictions f(𝑥!; Θ) and the actual labels 𝑦! . During training, the model 
parameters are optimised, for example, using gradient descent methods. Such training allows the 
model to adapt to the specifics of the data, reducing the error on the training set and increasing the 
ability to generalise to new data. 

At the Stage 5, the effectiveness of the models is evaluated by testing them and calculating metrics 
to select the most productive model. Model testing involves adapting the trained model on a test data 
set to objectively evaluate its performance and generalisation ability [15]. Let us assume 
 

𝐷%*+% = 45𝑥. , 𝑦.67."#
/  

 
is the testing set of data, where 𝑥. – quotient vectors, а 𝑦. – corresponding marks. After training, the 
model f(Θ) predicts the meaning of the function 

 
𝑦8. = f5𝑥.; Θ6. 

 
The productivity of the model is evaluated by computing metrics that compare the predictions of 

𝑦8. with the actual labels of 𝑦. . The most common metric for classification is accuracy [15] 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = #
/
∑ 𝐼5𝑦8. = 𝑦.6/
."# , 

 
where I(⋅) – indicator function. Other important metrics are precision  
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 01
01,21

, 
 
and completeness  
 

𝑅𝑒𝑐𝑎𝑙𝑙 = 01
01,23

, 
 

where TP, FP, FN are the number of true positive, false positive and false negative predictions, 
respectively. The latter two metrics characterise the quality of classification in more detail, especially 
when the data is unbalanced. This approach allows us to comprehensively evaluate the model's 
performance on independent data and identify its strengths and weaknesses. 

The best models are selected based on accuracy metrics. 
At the Stage, the meta-classifier is trained and evaluated for accuracy. This training is based on 

combining the predictions of several base models to build a generalised algorithm. First, the training 
data (𝑥%&'!$, 𝑦%&'!$) is used to train kkk base models 𝑓#, 𝑓-, … , 𝑓( , each of which generates its own 
predictions 𝑌K4! , 𝑌K4" , … , 𝑌K4# . These predictions are combined into a new feature matrix Z, where 𝑍 =
M𝑦84! , 𝑦84" , … , 𝑦84#M. The meta-classifier ggg is then trained on the new dataset (𝑍, 𝑦%&'!$) to optimally 
combine the predictions of the base models. Analytically, this can be expressed as finding a function 
𝑔:ℝ( → ℝ	 which minimizes some loss 𝐿(𝑔(𝒁), 𝒚), where L is the loss function that determines the 
difference between the meta-classifier's predictions and the actual class values. 

Evaluation of the meta-classifier accuracy on the test data includes a classification report and the 
feature matrix mentioned above. 

At the final Stage 7, a graph of the accuracy of various models, including the meta-classifier, is 
created. 



3. Case Study 

Monitoring of rivers is carried out according to various parameters, the main ones being biological 
chemical, physicochemical and hydromorphological [10; 11]. Determination of the ecological state 
of a surface water body is based on the use of a complex of biotic and abiotic components inherent 
in aquatic ecosystems. The following classes are used to classify the ecological status of a surface 
water body: I – ‘excellent’, indicated in blue; II – ‘good’, indicated in green; III – ‘satisfactory’, 
indicated in yellow; IV – the state corresponding to the ecological condition ‘poor’, indicated in 
orange [12]. A list of chemical pollutants is defined for surface water monitoring [13].  

The chemical state of a surface water body is determined on the basis of environmental quality 
standards.  

Such standards are set on two levels: the maximum permissible concentration and the average 
annual concentration. If water is found to be contaminated with chemicals, it is necessary to measure 
their content in bottom sediments and confirm their bioaccumulation. Two classes are used to 
classify the chemical state of a surface water body. For graphical representation, each class is denoted 
by a different colour: Class I chemical status, which corresponds to the chemical status of ‘good’, is 
indicated in blue; Class II chemical status, which corresponds to the chemical status of ‘less than 
good’, is indicated in red. 

As a result of monitoring of the surface water massif conducted by the laboratory of the Regional 
Department of the State Agency of Water Resources of Ukraine for the Dniester River Basin in 2021-
2023, physicochemical indicators were obtained, including heavy metals, for a total of 27 items. The 
data were processed using the tools of this study including an evaluation of various classification 
models based on accuracy and other important metrics. According to the results of the analysis 
(Table 1), the selected models Random Forest, Gradient Boosting and XGBoost showed the highest 
accuracy above 90%. 
 
Table 1 
Results of the classification models 

Model Accu-
racy 

0_Preci-
sion 

0_Recall 0_F1-
Score 

1_Preci-
sion 

1_Recall 1_F1-
Score 

Macro 
Avg 
Preci-
sion 

Macro 
Avg 
Recall 

Macro 
Avg 
F1-
Score 

Weigh-
ted 
Avg 
Preci-
sion 

Weigh-
ted 
Avg 
Recall 

Weighted 
Avg F1-
Score 

Logistic 
Regression 

0,88 0,95 0,91 0,93 0,64 0,78 0,70 0,79 0,84 0,81 0,90 0,88 0,89 

K-Nearest 
Neighbors 

0,85 0,89 0,93 0,91 0,57 0,44 0,50 0,73 0,69 0,70 0,83 0,85 0,84 

Support 
Vector 
Machine 

0,83 0,83 1,00 0,91 0,00 0,00 0,00 0,41 0,50 0,45 0,68 0,83 0,75 

Decision 
Tree 

0,88 0,95 0,91 0,93 0,64 0,78 0,70 0,79 0,84 0,81 0,90 0,88 0,89 

Random 
Forest 

0,92 0,91 1,00 0,96 1,00 0,56 0,71 0,96 0,78 0,83 0,93 0,92 0,91 

Gradient 
Boosting 

0,90 0,91 0,98 0,94 0,83 0,56 0,67 0,87 0,77 0,81 0,90 0,90 0,90 

AdaBoost 0,87 0,91 0,93 0,92 0,63 0,56 0,59 0,77 0,74 0,75 0,86 0,87 0,86 
XGBoost 0,90 0,93 0,95 0,94 0,75 0,67 0,71 0,84 0,81 0,82 0,90 0,90 0,90 
LightGBM 0,88 0,91 0,95 0,93 0,71 0,56 0,63 0,81 0,75 0,78 0,88 0,88 0,88 
Naive 
Bayes 

0,63 1,00 0,56 0,72 0,32 1,00 0,49 0,66 0,78 0,60 0,88 0,63 0,68 

 
The main ions that determine the chemical type of water are: HCO3, SO42-, Cl-, Ca2+, Mg2+, 

Na+, K+. In freshwater, their content reaches 95% of all salts. The mineralisation of the river waters 
studied in this research mainly depends on natural factors. 

The pH of river waters depends on the concentration of calcium Ca(HCO3)2 and magnesium 
Mg(HCO3)2 in the water, carbon dioxide (CO2), humic acids and rock diversity. Thus, the pH of 
water reflects the geochemical situation of the territory. 



The biogenic substances of the water resources under study include primarily nitrogen and 
phosphorus compounds, which are part of the tissues of living organisms and are vital for the 
development of aquatic plants and animals. The concentration of nutrients is an indicator of the 
biological and biochemical processes taking place in water bodies.  

In general, the hydrochemical composition of the water resources that were the subject of this 
study is characterised by the presence of nutrients, trace elements and specific pollutants, as well as 
chemical compounds of agronomic origin. A significant proportion of the substances identified as 
the main factors are caused by the inflow of untreated wastewater from enterprises, surface-slope 
runoff from agricultural land and domestic wastewater. 

To identify common factors a network diagram of the influence of factors for different classifiers 
is used, including Decision Tree, Random Forest, Gradient Boosting, and XGBoost (Fig. 1). Red nodes 
represent factors used by three or more models, orange nodes represent factors shared by two 
models, and blue nodes represent factors used by only one model. Green nodes represent the models 
themselves. The importance of each factor is represented by a number on the edges connecting the 
models to the factors. 

The most common factors are located in the centre of the network, such as FLR_AVG, which is 
used by all models, and CAD_AVG and FLR_MAX, which are important for three models. These 
factors have the greatest importance and impact on the classification result, as evidenced by their 
high importance values (0.200 for Decision Tree, 0.091 for Random Forest, 0.202 for Gradient 
Boosting, and 0.162 for XGBoost). 

 

 
Figure 1: Network diagram of influential features across classifiers with importances 

 
To improve the prediction accuracy, we developed a meta-classifier that combines several basic 

classifiers as part of an ensemble model. Picture 2 shows the StackingClassifier, which includes four 
basic classifiers (which were identified in the previous step): Decision Tree, Random Forest, Gradient 
Boosting, and XGBoost. To set up the meta-classifier (RandomForestClassifier), we used 
RandomizedSearchCV with the parameters: n_estimators from 50 to 300, max_depth from 4 to 7, 
min_samples_split from 2 to 10, min_samples_leaf from 1 to 4, and bootstrap (True/False). The best 
parameters were searched for using five-fold cross-validation (cv=5), 50 iterations, and a random 
state (random_state=42). The best meta-classifier was used in StackingClassifier as a final estimator.  

After training the ensemble model on the training data (Fig. 2), the accuracy of the classifier was 
0.9423. Testing the model on the test data showed an accuracy of 94.23%, with macro averages of 
precision (0.91), recall (0.88), and f1-score (0.89). For class 0, the model achieved an accuracy of 0.95, 
recall of 0.98 and f1-score of 0.97, while for class 1, the accuracy was 0.88, recall 0.78 and f1-score 
0.82. The confusion matrix showed that the model correctly classified 42 out of 43 cases in class 0 
and made only 1 mistake, while the model correctly classified 7 out of 9 cases in class 1 and made 2 



mistakes. These results confirm the high efficiency of using ensemble methods to improve 
classification accuracy. 

 

 
Figure 2: Training results of the ensemble model on the training data 

 
The graph (Fig. 3) shows the accuracy of the five classifiers: Decision Tree, Random Forest, 

Gradient Boosting, XGBoost and Stacking Ensemble. According to the results, Random Forest 
showed the highest accuracy among the individual models, reaching 92.31%. The accuracy of 
Decision Tree, Gradient Boosting, and XGBoost was 90.38%. The highest accuracy was demonstrated 
by Stacking Ensemble, which combines all of these models, reaching 94.23% accuracy. This shows 
the effectiveness of using ensemble methods that combine several models to improve the overall 
classification accuracy. 

 
Figure 3: Comparison of classifiers on the test set 

 
Based on the cross-validation evaluation on the new dataset (Fig. 4), the ensemble classifier 

Stacking showed the highest accuracy with an average value of 0.8135, which indicates its superiority 
compared to individual models.  

 
Figure 4: Comparing classifiers on a new data set 



4. Conclusion 

Systematic research in recent decades has shown that the water quality of surface water sources is 
getting worse and worse almost everywhere from year to year. 

The authors have analyzed various classification models, focusing on their accuracy and other 
key metrics. According to the results, the Random Forest, Gradient Boosting, and XGBoost models 
demonstrated the highest accuracy rates, exceeding 90%. In particular, the Random Forest model 
achieved an accuracy of 92% with a macro average accuracy of 96%,  

Based on the results of our investigation, models with an accuracy of more than 90%, namely 
Random Forest, Gradient Boosting and XGBoost, were selected for further analysis of the influence 
of factors. The network diagram of the influence of factors for different classifiers represents the 
importance of each factor by the number on the edges connecting the models to the factors. The 
most common factors are located in the centre of the network, such as FLR_AVG as well as 
CAD_AVG and FLR_MAX. It has been proved experimentally that these factors have the greatest 
importance and impact on the classification result. Other factors, such as DDT3_AVG and 
CPM_AVG, are used by only one model and have a lower importance. This distribution demonstrates 
the dependence of different models on different factors, providing a deeper understanding of the 
impact of each factor on the classification process. 
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