Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.wunu.edu.ua/handle/316497/53202
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorБруханський, Руслан Феоктистович-
dc.contributor.authorDubchak-
dc.contributor.authorSachenko-
dc.contributor.authorBodyanskiy-
dc.contributor.authorWolff-
dc.contributor.authorVasylkiv-
dc.contributor.authorKochan-
dc.date.accessioned2025-01-29T12:28:49Z-
dc.date.available2025-01-29T12:28:49Z-
dc.date.issued2024-
dc.identifier.citationDubchak L., Sachenko A., Bodyanskiy Y., Wolff C., Vasylkiv N., Brukhanskyi R., Kochan V. Adaptive Neuro-Fuzzy System for Detection of Wind Turbine Blade Defects. Energies. 2024. 17(24), 6456. https://doi.org/10.3390/en17246456uk_UA
dc.identifier.urihttp://dspace.wunu.edu.ua/handle/316497/53202-
dc.description.abstractWind turbines are the most frequently used objects of renewable energy today. However, issues that arise during their operation can greatly affect their effectiveness. Blade erosion, cracks, and other defects can slash turbine performance while also forcing maintenance costs to soar. Modern defect detection applications have significant computing resources needed for training and insufficient accuracy. The goal of this study is to develop the improved adaptive neuro-fuzzy inference system (ANFIS) for wind turbine defect detection, which will reduce computing resources and increase its accuracy. Unmanned aerial vehicles are deployed to photograph the turbines, and these images are beamed back and processed for early defect detection. The proposed adaptive neuro-fuzzy inference system processes the data vectors with lower complexity and higher accuracy. For this purpose, the authors explored grid partitioning and subtractive clustering methods and selected the last one because it uses three rules only for fault detection, ensuring low computational costs and enabling the discovery of wind turbine defects quickly and efficiently. Moreover, the proposed ANFIS is implemented in a controller, which has an accuracy of 91%, that is 1.4 higher than the accuracy of the existing similar controller.uk_UA
dc.language.isoenuk_UA
dc.publisherEnergiesuk_UA
dc.subjectЕнергетикаuk_UA
dc.subjectВітрова турбінаuk_UA
dc.subjectНейронечітка системаuk_UA
dc.subjectДефект лопатіuk_UA
dc.titleAdaptive Neuro-Fuzzy System for Detection of Wind Turbine Blade Defectsuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Статті

Файли цього матеріалу:
Файл Опис РозмірФормат 
energies-17-06456-v2.pdf6.54 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.