Face detection on grayscale and color images using combined cascade of classifiers

dc.contributor.authorKurylyak, Yuriy
dc.contributor.authorPaliy, Ihor
dc.contributor.authorSachenko, Anatoly
dc.contributor.authorChohra, Amine
dc.contributor.authorMadani, Kurosh
dc.date.accessioned2018-12-05T09:53:30Z
dc.date.available2018-12-05T09:53:30Z
dc.date.issued2009
dc.description.abstractThe paper describes improved face detection methods for grayscale and color images using the combined cascade of classifiers and skin color segmentation. The combined cascade with proposed face candidates’ verification method allows achieving one of the best detection rates on CMU test set and a high processing speed suitable for a video flow processing. It’s also shown that the mixture of color spaces is more efficient during the skin color segmentation than the application of one color space. A lot of experiments are made to choose rational parameters for the developed face detection system in order to improve the detection rate, false positives’ number and system’s speed.uk_UA
dc.identifier.citationKurylyak, Y. Face detection on grayscale and color images using combined cascade of classifiers [Text] / Yuriy Kurylyak, Ihor Paliy, Anatoly Sachenko, Amine Chohra, Kurosh Madani // Computing = Комп’ютинг. - 2009. - Vol. 8, is. 1. - P. 61-71.uk_UA
dc.identifier.urihttp://dspace.tneu.edu.ua/handle/316497/32009
dc.publisherТНЕУuk_UA
dc.subjectFace Detectionuk_UA
dc.subjectSkin Color Segmentationuk_UA
dc.subjectHaar-like Features’ Cascade of Weak Classifiersuk_UA
dc.subjectConvolutional Neural Networkuk_UA
dc.subjectCombined Cascade of Classifiersuk_UA
dc.titleFace detection on grayscale and color images using combined cascade of classifiersuk_UA
dc.typeArticleuk_UA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kurylyak.pdf
Size:
2.14 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.37 KB
Format:
Item-specific license agreed upon to submission
Description: