Intelligent Classifier Based on Radial Basis Function Network for the Task of Identification the Recurrent Laryngeal Nerve in a Surgical Wound

dc.contributor.authorSavka, Nadiya
dc.contributor.authorDyvak, Mykola
dc.contributor.authorPukas, Andriy
dc.contributor.authorNemish, Vasyl
dc.contributor.authorСавка, Надія
dc.contributor.authorДивак, Микола
dc.contributor.authorПукас, Андрій
dc.contributor.authorНеміш, Василь
dc.date.accessioned2016-11-17T10:34:47Z
dc.date.available2016-11-17T10:34:47Z
dc.date.issued2014
dc.description.abstractThe application of radial basis function networks (RBFN) for identification the recurrent laryngeal nerve (RLN) in a surgical wound was proved in this paper. The intelligent classifier based on artificial neural network with radial basis functions (RBF) was created. The task of identification the recurrent laryngeal nerve during thyroid surgery in the process of classification the information signals from different patients is considered.uk_UA
dc.identifier.citationSavka, N. Intelligent Classifier Based on Radial Basis Function Network for the Task of Identification the Recurrent Laryngeal Nerve in a Surgical Wound / Nadiya Savka, Mykola Dyvak, Andriy Pukas, Vasyl Nemish // Journal of applied computer science. – 2014. – Vol. 22, № 2. – Р. 55-64.uk_UA
dc.identifier.urihttp://dspace.tneu.edu.ua/handle/316497/4922
dc.subjectintelligent classifieruk_UA
dc.subjectartificial neural networksuk_UA
dc.subjectradial basis function networkuk_UA
dc.subjectrecurrent laryngeal nerveuk_UA
dc.subjectidentificationuk_UA
dc.titleIntelligent Classifier Based on Radial Basis Function Network for the Task of Identification the Recurrent Laryngeal Nerve in a Surgical Wounduk_UA
dc.typeArticleuk_UA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1intelligent classifier based on radial basis function network for the task of identification the recurrent laryngeal nerve in a surgical wound.pdf
Size:
224.26 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.37 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections